
Current status of FDPS and Future plans

Jun Makino
R-CCS Particle Simulator Research Team/Kobe University

FDPS team and collaborators
R-CCS
(Particle Simulator
Research Team)
Daisuke Namekata
Miyuki Tsubouchi
Jun Makino

Kobe U
Masaki Iwasawa
Kentaro Nomura

JAMSTEC
Natsuki Hosono

U. Tokyo
Ataru Tanikawa
Long Wang
Yota Ishigaki

NSC in Wuxi
(Implementation on Sunway
TaihuLight)
Zhao Liu
Haohuan Fu
Guangwen Yang

and many others

Talk plan
1. What we want to do when writing particle-based simulation

codes. (or any other large-scale HPC code)

2. What should be done?

3. Design of FDPS

4. Performance

5. Future plan

What we want to do
• We want to try large

simulations.

• Computers (or the
network of computers...)
are fast enough to handle
hundreds of millions of
particles, for many
problems.

• In many fields, largest
simulations still employ
1M or less particles....

(example: Canup+ 2013)

What we want to do
• Write a simple program expressing the numerical scheme

used

• Run it on notebooks, desktops, clusters and large-scale
HPC platform

What we are doing now
• rewrite the entire program using MPI to make use of multi-

ple nodes.

• apply complicated optimizations to hide interprocessor com-
munications.

• rewrite data structure and loop structure to make efficient
use of data caches.

• rewrite inner loops and data structure to let compilers make
use of SIMD instruction sets.

• apply machine-specific optimizations or write codes using
machine-specific languages (Cu**, Open**).

Existing efficient codes
Astrophysics

• Gadget (Springel et al. 2001)

• GreeM (Ishiyama et al. 2009)

• pkdgrav (Quinn et al. 1997)

Molecular Dynamics
GENESIS, GROMACS, LAMMPS, Modylas, NAMD, and several

others

Developers need to write codes for domain decomposition,
particle move, and interaction calculation.

Our solution
If we can develop a program which can generate a highly op-

timized MPI program for

• domain decomposition (with load balance)

• particle migration

• interaction calculation (and necessary communication)

for a given particle-particle interaction, that will be the solu-
tion.

Design concept
• API defined in C++

• Users provide

– Particle data class
– Function to calculate particle-particle interaction

Our program generates necessary library functions. Inter-
action calculation is done using parallel Barnes-Hut tree al-
gorithm

• Users write their program using these library functions.

Actual “generation” is done using C++ templates.

Initial release
Iwasawa+2016 (PASJ 2016, 68, 54+arxive 1601.03138)

• Publicly available

• A single user program can be compiled to single-core, OpenMP
parallel or MPI parallel programs.

• Parallel efficiency is very high

• As of version 3.0 (released 2016) GPUs can be used and
user programs can be in Fortran (and now also pure C).

• Versions 4.0 and 5.0 offers many performance improvements.

Tutorial
FDPS Github: https://github.com/FDPS/FDPS

https://github.com/FDPS/FDPS/raw/master/doc/doc_tutorial_cpp_en.pdf
https://github.com/FDPS/FDPS

Getting FDPS and run samples
> git clone git://github.com/FDPS/FDPS.git
> cd FDPS/sample/c++/nbody
> make
> ./nbody.out

To use OpenMP and/or MPI, change a few lines of Makefile

Example of calculation

Giant Impact calculation
(Hosono et al. 2017, PASJ
69, 26+)
Figure: 9.9M particles
Up to 2.6B particles tried
on K computer

animation Terrestrial magma ocean origin of the Moon, Hosono
et al. Nature Geoscience volume 12, 418423(2019)

file:///usr2/makino/papers/others/Hosono/GI_movie.mp4

Performance examples

10-3

10-2

10-1

100

101

102

102 103 104 105

w
al

l c
lo

ck
 ti

m
e

pe
r

tim
es

te
p[

s]

of cores

total
domain decomposition

exchange particle
grav

100

101

102

103

pe
rf

or
m

an
ce

[T
F

LO
P

S
]

K
XC30

50% of TPP (K)
35% of TPP (XC30)

Strong scaling with 550M
particles
Measured on both K computer
and Cray XC30 at NAOJ
Gravity only, isolated spiral
galaxy
scales up to 100k cores
30-50% of the theoretical peak
performance

Preparation for Fugaku and
next-generation platforms

Compared to K computer, future machines will have

• Larger number of cores, more FPUs per core

• (relatively) weak main memory

• (relatively) weak network

Our software should be ready for such machines to be useful.

How to be “future-proof”?
• One possibility: try to use machines with weak main mem-

ory and weak network.

• Examples as of 2015-2020: Sunway Taihulight and PEZY-
SC2(GYOUKOU)

Our current implementation
• Elimination of all-to-all communications and other opera-

tions with the cost proportional to the number of nodes.

• Use the same “interaction list” for multiple timesteps (sim-
ilar to “bookkeeping” or “pairlist” method

• Minimize the main memory access within FDPS (tree con-
struction etc)

• Minimize internode communication

• manual tuning of interaction kernels

Achieved performance

30-40% of the theoretical peak on both machines.
10M particles/MPI process
Planetary ring simulation

Future plan
Current status of FDPS:

• Users do not need to parallelize their codes by themselves.
FDPS does it.

• Optimization of the interaction kernel should still be done
by users.

What should be done
User: writes high-level description of interaction kernel
FDPS: generates optimized code for supported architectures

• Fugaku

• x86

• NVIDIA/AMD GPGPUs

• MN-Core

• (FPGA)

• ...

Example of high-level description
EPI F32vec xi:pos
EPI F32 eps2i:eps2
EPJ F32vec xj:pos
EPJ F32 mj:mass
EPJ F32 eps2j:eps2
FORCE F32vec f:acc
FORCE F32 phi:pot
rij = xi - xj
r2 = eps2i + eps2j + rij*rij
rinv = rsqrt(r2)
mrinv = mj*rinv
f -= mrinv*rinv*rinv*rij
phi -= mrinv

Example of high-level description (2)
EPI U32 ti:type

EPI F32vec ri:pos

EPI F32vec vi:vel

EPI F32 hi:h

EPJ U32 tj:type

EPJ F32vec rj:pos

EPJ F32vec vj:vel

EPJ F32 mj:mass

EPJ F32 uj:eng

FORCE F32 dens:dens

FORCE F32 pres:pres

FORCE F32 gradh:gradh

FORCE F32 divv:divv

FORCE F32 rotv:rotv

F32 gamma

function gradW(dr,h)

r = sqrt(dr*dr)

u = r*inv(h)

p1u = 1.0f - u

h2 = h*h

h5 = h2*h2*h

coeff = 1155.0f*inv(12.5663706144f*h5)

p1u2 = p1u*p1u

p1u5 = p1u2*p1u2*p1u

return - coeff*p1u5*(1.0f + 5.0f*u)

end

function W(r,h)

u = r*inv(h)

p1u = max(0.0f, 1.0f - u)

coeff = 495.0f*inv(100.530964915f*h*h*h)

p1u2 = p1u*p1u

p1u6 = p1u2*p1u2*p1u2

return coeff*p1u6*(1.0f + u*(6.0f + 11.6666666667f*u))

end

function dwdh(r,h)

u = r*inv(h)

p1u = max(0.0f, 1.0f - u)

h2 = h*h

coeff = 165.0f*inv(100.530964915f*h2*h2)

p1u2 = p1u*p1u

p1u5 = p1u2*p1u2*p1u

return -coeff*p1u5*(9.0f + u*(45.0f + u*(-5.0f - 385.0f*u)))

end

g1u = gamma - 1.0f

dr = ri - rj

dv = vi - vj

if tj > 0.0

rij = sqrt(dr*dr)

else

rij = 2.0f*hi

endif

wij = W(rij,hi)

dens += mj*wij

pres += g1u*mj*uj*wij

dwdh_ij = dwdh(rij,hi)

gradh += g1u*mj*uj*dwdh_ij

divv -= g1u*mj*uj*(dr*dv)*gradW(dr,hi)

tmp.x = dv.y*dr.z - dv.z*dr.y

tmp.y = dv.z*dr.x - dv.x*dr.z

tmp.z = dv.x*dr.y - dv.y*dr.z

rotv -= g1u*mj*uj*tmp

What need to be done
• (For CPUs) AoS/SoA conversion, use of SIMD intrinsics,

loop fission, stripmining, unrolling, software pipelining...

• (For GPUs and other accelerators) generation of kernel code
and codes for communication between CPU and GPU.

Current status:

• Automatic generation for Fugaku is working.

• The generated code is currently slightly (10-15%) slower
than our best hand-optimized code.

Summary
• FDPS is a framework which helps the development of scal-

able high-performance particle-based simulation codes

• It can be used with arbitrary particle structure and particle-
particle interaction function

• Efficiency of application written using FDPS is very high on
large-scale machines including K and Sunway Taihulight.
(30-50% of the peak)

• We are working on automatic generation of highly optimized
kernel for particle-particle interactions, and that for Fugaku
is almost ready

• FDPS will be used in various projects on Fugaku

