next up previous
Next: About this document Up: 高速多重極展開法とツリー法---多体シミュレーションのための高速算 法 Fast multipole Previous: 7 いくつかの話題

References

1
Anderson C. R., An implementation of the fast multipole method without multipoles. SIAM Journal on Scientific and Statistical Computing 13 (1992), 923--947.

2
Appel A. W., An efficient program for many-body simulation. SIAM Journal on Scientific and Statistical Computing 6 (1985) 85--103.

3
Barnes J. and Hut P., A hiearchical force calculation algorithm. Nature 324 (1986), 446--449.

4
Board J. A. J., Hakura Z. S., Elliott W. D., and Rankin W. T., Scalable variants of multipole-based algorithms for molecular dynamics applications, Proceedings of the Seventh SIAM Conference on Parallel Processing for Scientific Computing (edited by Bailey et al.), SIAM, Philadelphia, 1995, 295--300.

5
Blackston D. and Suel T., Highly portable and efficient implementations of parallel adaptive n-body methods. Proceedings of SC97. ACM 1997, (CD--ROM).

6
Elliott W. D. and Jr. J. A. B., Fast fourier transform accelerated fast multipole algorithm. SIAM Journal on Scientific Computing 17 (1996), 398--415.

7
福井卓雄、服部純一、土居野優, 高速多重極法の境界要素解析への応用. 構造工学論文集 43A (1997), 373--382.

8
Greengard L. and Rokhlin V., A fast algorithm for particle simulations. Journal of Computational Physics 73 (1987), 325--348.

9
Greengard L. and Rokhlin V., Rapid evaluation of potential fields in three dimensions. Vortex Methods (edited by Anderson C. and Greengard, C.), number 1360 in Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1988, 121--141.

10
Hockney R. W. and Eastwood J. W., Computer Simulation Using Particles. IOP Publishing, Ltd., Bristol, 1988.

11
Holt C. and Singh J. P., Hierarchical N-body Methods on Shared Address Space Multiprocessors, Proceedings of the Seventh SIAM Conference on Parallel Processing for Scientific Computing (edited by Bailey et al.), SIAM, Philadelphia, 1995, 313--318.

12
Hu Y., Jonsson S. L., and Teng S.-H., A data-parallel adaptive n-body method, Proceedings of the Eighth SIAM Conference on Parallel Processing for Scientific Computing. SIAM, 1997, (CD-ROM).

13
Lambert C. G., Darden T. A., and Board J. A., Jr., A multipole-based algorithm for efficient calculation of forces and potentials in macroscopic periodic assemblies of particles. Journal of Computational Physics 126 (1996), 274--285.

14
Makino J., Treecode with a special-purpose processor. 43 (1991), 621--638.

15
Makino J. and Taiji M., Special Purpose Computers for Scientific Simulations -- The GRAPE systems. John Wiley and Sons, Chichester, 1998.

16
Sugimoto D., Chikada Y., Makino J., Ito T., Ebisuzaki, T. and Umemura M., A special-purpose computer for gravitational many-body problems. Nature 345 (1990), 33-45.

17
Warren M. S. and Salmon J. K., Astrophysical N-body simulations using hierarchical tree data structures, Supercomputing '92, IEEE Comp. Soc., Los Alamitos, 1992, 570--576.

18
Warren M. S. and Salmon J. K., A parallel hashed oct-tree N-body algorithm, Supercomputing '93. IEEE Comp. Soc., Los Alamitos, 1993, 12--21.


Jun Makino
Tue Sep 1 21:46:06 JST 1998