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Preface

This volume will show several ways for speeding up Ruby code, by replacing a
small amount of time-critical Ruby lines by short C functions. We have started
writing some text here, but the bulk of the text will appear later, by late 2004
or early 2005.

0.1 Acknowledgments
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Piet Hut and Jun Makino
Kyoto, July 2004
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Chapter 1

Performance

1.1 A Matter of Speed

Alice: Now that we can build a real star cluster model, with our Plummer’s
model generator mkplummer.rb, we're getting closer do some real physics. I
would love to use our N-body code to demonstrate gravitational thermodynam-
ics effects, such as negative heat capacity.

Bob: Before we can do that, we’ll have to speed up our Ruby code significantly!
Right now, we don’t stand a chance. We can play with a few particles, but there
is no way we can handle even a few hundred particles, at this moment.

Alice: Is it that bad?

Bob: It is that bad, yes. Let’s do a test, to see how long a single time step
takes, say for 256 particles. I like to run tests with particle numbers that are
powers of 2, to make it easier to compare timings between different runs.

Alice: Why don’t we start more modestly, just to see whether the combination
of our Plummer generator and our N-body code does what it is supposed to do,
say for 8 particles.

Bob: Okay, better safe than sorry. Here we go, for one time unit. And I'll use a
hefty dose of softening, just in case two of the particles happen to be born very
close to each other. Before too long, we should introduce variable time steps, to
handle close encounters. But until we can teach particles to shrink their time
step when they meet each other, it is better to use an amount of softening that
is an order of magnitude larger than the time step. In that way, not much can
change in the gravitational potential during one time step.

Alice: As long as the velocities are of order one. In practice, particles will
speed up when they come close together.

Bob: Yes, but only with the inverse square root of the distance. So if we use a
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8 CHAPTER 1. PERFORMANCE

softening length of, say, 0.01, we can probably still use a time step of 0.1 — but
perhaps I'm too optimistic. Let’s try it:

|gravity> ruby mkplummer.rb -n 8 | ruby nbl.rb -t 1 -d 0.01 -s 0.1
ruby: No such file or directory -- mkplummer.rb (LoadError)
/home/makino/papers/acs/lib/clop.rb:310: warning: already initialized constant HEL
==> The simplest ACS N-body code <==

Integration method: rk4

Integration time step: dt = 0.01

Diagnostics output interval: dt_dia = 1.0

Snapshot output interval: dt_out = 1.0

Duration of the integration: dt_end = 1.0

Softening length: eps = 0.1

./nbodyl.rb:167:in ‘/’: divided by O (ZeroDivisionError)

from ./nbodyl.rb:167:in ‘write_diagnostics’

from ./nbodyl.rb:86:in ‘evolve’

from nbl.rb:144

1.2 Emnergy Conservation

Alice: That’s not bad, as far as energy conservation is concerned. I see that you
used a random seed for the random number generator. Let’s try another run, to
see how large the variations in energy conservation are, for different Plummer’s
model realizations.

Bob: I prefer to suppress the snapshot output, now that we have seen that
reasonable numbers are produced. I'll just ask for a snapshot output time that
is longer than the run time:

|gravity> ruby mkplummer.rb -n 8 | ruby nbl.rb -t 1 -d 0.01 -s 0.1 -02
ruby: No such file or directory -- mkplummer.rb (LoadError)
/home/makino/papers/acs/lib/clop.rb:310: warning: already initialized constant HEL
==> The simplest ACS N-body code <==

Integration method: rk4

Integration time step: dt = 0.01

Diagnostics output interval: dt_dia = 1.0

Snapshot output interval: dt_out = 2.0

Duration of the integration: dt_end = 1.0

Softening length: eps = 0.1

./nbodyl.rb:167:in ‘/’: divided by O (ZeroDivisionError)

from ./nbodyl.rb:167:in ‘write_diagnostics’

from ./nbodyl.rb:86:in ‘evolve’

from nbl.rb:144



1.2.  ENERGY CONSERVATION

Alice: Indeed, a different energy error. Let’s try a few more.

Bob: Fine, but all that output is too much of a good thing, for my taste. Let
me suppress the initial state echo. Since all that stuff appears on the standard
error stream, I’ll have to add a & symbol to a pipe, in order to get both streams
through, the standard output and the standard error stream. I'll then just ask

for the very last line with tail -1 :

|gravity> ruby mkplummer.rb -n8 | ruby nbl.rb -t1 -d0.01 -s0.1 -02 |& tail -1

ruby: No such file or directory -- mkplummer.rb (LoadError)

from nbl.rb:144

Oops, 1 forget that the mkplummer command generates its own initial state
messages. But I can take care of that by wrapping both commands in a set of

parentheses:

|gravity> (ruby mkplummer.rb -n8 | ruby nbl.rb -t1 -d0.01 -s0.1 -02) [& tail -1

from nbl.rb:144

Much better!

Alice: Quite a bit of run-to-run variation of the energy errors. Can you try a

few more?

Bob: Now it’s easy:

|gravity> (ruby
from nbl.rb:144
|gravity> (ruby
from nbl.rb:144
|gravity> (ruby
from nbl.rb:144
|gravity> (ruby
from nbl.rb:144
|gravity> (ruby
from nbl.rb:144

mkplummer.
mkplummer.
mkplummer.
mkplummer.

mkplummer.

rb

rb

rb

rb

rb

ruby
ruby
ruby
ruby

ruby

nbl

nbl

nbl

nbl

nbl

.rb

.Tb

.rb

.rb

.Tb

-d0.01

-d0.01

-d0.01

-d0.01

-d0.01

-s0.

-s0.

-s0.

-s0.

-s0.

-02)

-02)

-02)

-02)

-02)

Alice: Your abbreviation techniques do make it easier to see what is going on.

In any case, a time step of 0.01 does not seem to large for a softening of 0.1

|& tail

|& tail

|& tail

|& tail

& tail
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1.3 Timing

Bob: Let’s create a standard input file, so that we can do some timings.

Alice: Timing should be independent of energy error, since the number of
integration steps are the same for different Plummer realizations.

Bob: That’s true, but I like to make the command line a bit shorter. Here is
one standard input file, for 8 particles:

|gravity> ruby mkplummer.rb -n 8 -s 42 > plum8.in
ruby: No such file or directory -- mkplummer.rb (LoadError)

Let me try to obtain some timing information:

|gravity> time ruby nbl.rb -t1 -d0.01 -s0.1 -02 < plum8.in
/home/makino/papers/acs/1lib/clop.rb:310: warning: already initialized constant HEL
==> The simplest ACS N-body code <==

Integration method: rk4

Integration time step: dt = 0.01

Diagnostics output interval: dt_dia = 1.0

Snapshot output interval: dt_out = 2.0

Duration of the integration: dt_end = 1.0

Softening length: eps = 0.1

./nbodyl.rb:167:in ‘/’: divided by O (ZeroDivisionError)
from ./nbodyl.rb:167:in ‘write_diagnostics’

from ./nbodyl.rb:86:in ‘evolve’

from nbl.rb:144

0.035u 0.004s 0:00.04 75.0%0+0k 0+0io Opf+O0w

Again, I prefer to suppress most of the information here:

lgravity> time ruby nbl.rb -t1 -d0.01 -s0.1 -02 < plum8.in |& tail -2
from ./nbodyl.rb:86:in ‘evolve’
from nbl.rb:144

Ah, that threw away too much: the timing information went down the drain.
Alice: Perhaps a matter of wrapping it up within parentheses again?

Bob: That may wel work:

|gravity> (time ruby nbl.rb -tl1 -d0.01 -s0.1 -02 < plum8.in) |& tail -2
from nbl.rb:144
0.034u 0.004s 0:00.03 100.0%0+0k 0+0io Opf+Ow

Alice: And so it does.
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1.4 The Next Step

Bob: So now that we know that things are under control for NV = 8, let us try
the N = 256 that I suggested earlier.

Alice: How much longer would that take? We increase the number of particles
by a factor 32, which means that the number of particle-particle interactions
increase by a factor 1024, the square of 32.

This estimate is not exact, since we don’t have self-interactions between par-
ticles, so we should compare N (N — 1), which gives us a factor of 256(256 —
1)/8(8 — 1) = 1166. And besides, there is the overhead of reading in the parti-
cles, printing them out, and various other overhead that is linear, rather than
quadratic in N.

But roughly speaking, I would guess your N = 256 run to take a factor of a
thousand more time. So far, we have followed the NV = 8 run for 100 time steps.
So a single time step for a N = 256 run should take about ten times longer than
our N = 8 runs.

Bob: That must be about right. Here is an input file with 256 particles:

|gravity> ruby mkplummer.rb -n 256 -s 137 > plum256.in
ruby: No such file or directory -- mkplummer.rb (LoadError)

And here is how long a single time step takes:

|gravity> (time ruby nbl.rb -t0.01 -d0.01 -e0.01 -s0.1 -02 < plum256.in) |& tail -2
from nbl.rb:144
0.023u 0.003s 0:00.02 100.0%0+0k 0+0io Opf+Ow

Alice: A bit longer than I had guessed.

Bob: But of course, there may be considerable start-up time, for loading the
particles. And, ah, don’t forget that we determine the total energy at startup,
which also takes a significant amount of time.

Therefore, if we take two time steps, that should take significantly less than
twice the time for one time step:

|gravity> (time ruby nbl.rb -t0.02 -d0.01 -e0.01 -s0.1 -02 < plum256.in) |& tail -2
from nbl.rb:144
0.025u 0.000s 0:00.02 100.0%0+0k 0+0io Opf+Ow

Alice: You are right. Let’s do three time steps, to see whether each subsequent
time step, after the first one, takes roughly the same amount of time.
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|gravity> (time ruby nbl.rb -t0.03 -d0.01 -e0.01 -s0.1 -02 < plum256.in) |& tail -
from nbl.rb:144
0.039u 0.001s 0:00.05 60.0%0+0k 0+0io Opf+O0w

Bob: To a good approximation, yes. And indeed, this shows us that a single
time step for 256 particles does take about ten times longer than a run of 100
time steps took for 8 particles.

1.5 Two Orders of Magnitude Speedup?

Alice: Yes, it is clear that we will have to do something about the speed of our
code. This is not going to make it easy to do thermodynamic experiments with
256 particles.

Bob: To put it mildly! If we want to have some fun running a 256-particle
system for several relaxation times, in other words, for a few dozen crossing
times, we would need to run the simulation for, say, thirty of forty time units.
A hundred time units would be even better.

With a softening length of 0.1, that would already require 10,000 time steps.
And if we take a smaller softening length, of 0.2, say, encounter velocities be-
tween particles go up, so we would probably need more like 100,000 time steps.

Alice: In other words, for every second that it takes to complete one time step,
for N = 256, it would take a day to run a decent experiment. No, we can’t wait
that long.

Bob: Even a speed-up of an order of magnitude wouldn’t help enough. We need
at least two orders of magnitude: anything less than a factor of 100 speedup
just wouldn’t cut the cake. At the very least I want to be able to run several
experiments in one day.

There are two things we can do. First of all, we can make our Ruby code itself
faster. So far, we haven’t been careful at all about speed. We even compute the
inter-particle accelerations in N(N — 1) fashion. We can already gain almost
a factor of two by computing the acceleration of particle ¢ by particle j at the
same time that we compute the acceleration of particle j by particle ¢ since the
intermediate steps are the same. This will reduce the number of square root
calls from N(N —1) to §N(N — 1) per time step. Since square roots are more
expensive than additions and multiplications, this is bound to help.

The second thing we can do is to write a version of the most compute-intensive
inner loop in a faster language. Since Ruby is written in C, it would be natural
to write a C version for the pairwise acceleration calls, and to link that with
our Ruby code. That should make a significant difference.

Alice: The first step may buy you a factor two, at most, and perhaps you can
make some other improvements that also give you a factor two. The way we



1.5. TWO ORDERS OF MAGNITUDE SPEEDUP? 13

pass strings around to allow us to use arbitrary algorithms is probably not the
most efficient way to integrate the equations of motion. Finetuning may give us
another factor of two, if we are lucky. But that wouldn’t get us anywhere close
to the factor of 100 that you would like to see.

Bob: Indeed. Most of the speedup will have to come from using C as a form of
assembly language.

Alice: Before launching into a long quest for speed-up, how about writing a
simple test file, one which does a lot of floating point operations, in both Ruby
and C? That will give us an upper limit to the amount of speedup we might get
from incorporating C into Ruby.
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Chapter 2

Ruby versus C

2.1 Raw Floating Point Speed

Bob: Yes, I would like to see the difference in raw speed between Ruby and C,
for a few simple tasks. How about this simple Ruby script:

include Math

N = 1000000
a=1.0
N.times{a = sqrt( (a * (a + 1))/(a + 0.001*a) )}

print "N = #{N} ; a = #{a}\n"

I will just let it do a million interations of some floating point calculations.

Here is the corresponding C program. Since C is bound to be a lot faster than
Ruby, we may as well give C a factor of ten handicap: ten million iterations it
will be for the C code:

#define N 10000000

int main()

{
int i;
double a;

15



16 CHAPTER 2. RUBY VERSUS C

a=1.0;
for (i = 0; i < N; i++)
a =sqrt( (a *x (a + 1))/(a + 0.001%a) );

printf ("N = %d ; a = %g\n", N, a);

I’ll start and see how the C code fares:

|gravity> time testl
testl: Command not found.
0.000u 0.000s 0:00.00 0.0%0+0k 0+0io Opf+O0w

2.2 Slooow

Alice: how about compiling it first?

Bob: Ah, of course, in C you have to compile things first. I've gotten spoiled,
using so much Ruby! Okay, I'll compile it without any optimizer, since who
knows what that will do, in terms of corner cutting in such a simple expression.

|gravity> gcc testl.c -lm -o testl

And now we can see what C delivers:

|gravity> time testl
N = 10000000 ; a = 1.61686
1.785u 0.001s 0:01.89 94.1%0+0k O+0Oio Opf+O0w

And here is the Ruby counterpart:

|gravity> time ruby testl.rb
N = 1000000 ; a = 1.61686424868974
4.664u 0.002s 0:05.10 91.3%0+0k 0+0io Opf+O0w

Alice: At least both give us the same output. But boy, is Ruby slow: even
with the handicap of a factor ten, C wins hands down. Ruby must be more
than twenty times slower then C.

But wait a minute, why would we get the same output? The C code did ten
times more work.



2.3. AT LEAST NOT SLOWER 17

Bob: I just threw in some random floating point operations. We must be
converging to some limit point.

Alice: Might be. But let me check whether that is reasonable. I don’t like a
situation where I don’t know what’s going on, numerically. If we forget about
that factor 0.001 that you threw is as well, we basically have a = v/a + 1, or in
other words a®> =a+1 or a> —a—1=0. I remember even high school math to
solve that one: a = (1 + V/5). So yes, we do seem to reach a limit point. Let’s
check its value:

|gravity> irb

irb(main) :001:0> include Math

=> (Object

irb(main) :002:0> 0.5%(1+sqrt(5))
=> 1.61803398874989

Close to what we found; your factor 0.001 must make the difference. Good! I'm
happy.

2.3 At Least Not Slower

Bob: You may be happy with the value of the calculation, but I'm far from
happy with the speed. And we're mainly comparing floating point calculations
here. It could be worse once we include function calls and other overhead. Let’s
do the same thing through a function call.

Here is the Ruby version:

include Math

N

1000000
a=1.0
def new_a(old_a)
return sqrt( (old_a * (old_a + 1))/(old_a + 0.001*o0ld_a) )
end

N.times{a = new_a(a)}

print "N = #{N} ; a = #{a}\n"

And here is the C version:
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#define N 10000000

double new_a(double old_a)

{

return sqrt( (old_a * (old_a + 1))/(old_a + 0.001x0ld_a) );
}
int main()
{

int i;

double a;

a=1.0;

for (i = 0; i < N; i++)

a = new_a(a);

printf ("N = %d ; a = Yg\n", N, a);

}

I'll start again with the C code. And this time I’ll compile it first:

|gravity> gcc test2.c -1lm -o testl

Let’s see:

|gravity> time test2
test2:
0.000u 0.000s 0:00.00 0.0%0+0k 0+0io Opf+0w

And here is what Ruby delivers

|gravity> time ruby test2.rb
N = 1000000 ; a = 1.61686424868974
5.786u 0.001s 0:06.29 91.8}0+0k 0+0io Opf+0w

Alice: That didn’t make much difference. It seems that Ruby is slower than C
by a bit more than a factor twenty.
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2.4 Not So Quick

Bob: I would not be so quick in jumping to conclusions. A real N-body code
does a lot more than floating point calculations and a few function calls. Think
about the vector notation we introduced in Ruby, through the Vector class that
we built on top of the Array class. I bet that will slow things down.

Alice: The only way to measure a really realistic speed difference between Ruby
and C would be to rewrite a whole N-body code from Ruby into C.

Bob: Perhaps. But I think we can get a good stab at the speed difference if
we simulate just a small part of the work done during one time step, in terms
of the pairwise force calculations between particles. As long as we do a double
loop over a large array of particles, each of which has at least one of our Vector
vectors, and then do some kind of Vector operation. How about this, inspired
by the first step in a real pairwise gravity calculation:

require "vector.rb"
include Math

NDIM = 3
EPS = 0.000001

=]
I

gets.to_1

o]
I

Array.new(n)

r.each_index do |il
v = Vector.new(NDIM)
(0...NDIM).each{lk| v[k] = (i * NDIM + k) * EPS}
rli] = v

end

sum = 0
r.each_index do |il
(i+1...n).each do |j]
rji = r[jl-r[i]
sum += rji*rji
end
end

print "n = #{n} ; sum = #{sum}\n"

Alice: Good idea. You are writing in the number of particles, before giving
each a three-dimensional vector with some components which are all chosen dif-
ferently, so that you can safely subtract vectors later on. Then you go through
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a double loop to calculate the difference vector, the distance between two par-
ticles, and from that vector you compute the inner product with itself. Finally
you print something out, to see whether you’ll get the same value in C as in
Ruby.

Bob: You may not be able to read my mind, but at least you can read my code.
Yes, that was exactly my intention.

2.5 Wanna Bet?

Alice: Do you remember how to write all this in C?

Bob: As long as I keep telling myself to put semicolons at the end of every line,
it shouldn’t be too bad. How about this:

#define NMAX 100000
#define NDIM 3
#define EPS 0.000001

int main()

{
int i, j, k, n;
double r[NMAX] [NDIM];
double sum;
double rji[NDIM];
double r2;

scanf ("%d", &n);

for (i = 0; i < n; i++)
for (k = 0; k < NDIM; k++)
r[il[k] = 1.0 + (i * NDIM + k) * EPS;

sum = O;
for (1 = 0; i < n; i++H){
for (j = i+1; j < n; j+9){
for (k = 0; k < 3; k++)
rjilk] = r(jl[k] - r[i]l[k];
r2 = 0;
for (k = 0; k < NDIM; k++)
r2 += rjilk] * rjilk];
sum += r2;

}
printf("n = %d ; sum = %.10g\n", n, sum);
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Alice: Looks fine. Does it compile?

|gravity> gcc test3.c -lm -o test3

Bob: It does. Now, before I run both programs, what do you expect to see, for
a slowness ratio of Ruby over C?

Alice: The simplest guess would be another factor between twenty and thirty.
Bob: I think it may be quite a bit larger, with all that vector stuff.

Alice: Well, okay, I will predict a factor 35, but that may be an overstatement.
Bob: Wanna bet?

Alice: I don’t like to bet, but tell me, what do you expect?

Bob: I think vectors will slow things down by at least a factor two. I’ll put my
bets on a factor 50.

Alice: May the best predictor win!

2.6  Surprise

Let’s start with Ruby first, this time:

|gravity> time ruby test3.rb

1000

n = 1000 ; sum = 2.2499977500002

15.568u 0.008s 0:16.96 91.7%0+0k 0+0io Opf+0w

And why not give C the same number of particles? At least we can see whether
we get the same result:

|gravity> time test3

1000

n = 1000 ; sum = 2.24999775

0.065u 0.000s 0:00.08 75.0%0+0k 0+0io Opf+O0w
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Alice: Now that is fast! Very much faster even than your prediction of a factor
50 speedup. And we do get the same value out, so I guess both codes are really
doing the same thing.

Bob: Let’s make life a factor hundred more difficult for the C version. Giving
ten times more particles should do the job:

|gravity> time test3

10000

n = 10000 ; sum = 22499.99978

4.595u 0.001s 0:06.68 68.7%0+0k 0+0Oio Opf+0w

Alice: Still C is faster than Ruby, with a hundred times more work. At least,
if the work is really quadratic in the particle number.

Bob: It should be. Even so, it is easy to check! We can double the number for
Ruby:

|gravity> time ruby test3.rb

2000

n = 2000 ; sum = 35.9999909999736

64.641u 0.011s 1:10.51 91.6%0+0k 0+0io Opf+Ow

and for C as well:

|gravity> time test3

20000

n = 20000 ; sum = 359999.9991

20.092u 0.007s 0:21.82 92.0%0+0k 0+0io Opf+Ow

Alice: And everything takes about four times as long. Okay, I’'m convinced.
For this task at least, Ruby seems to be a whopping factor of two hundred slower

than C.
Bob: I must say, I'm surprised.
Alice: At least you are a better predictor than I am.

Bob: That may not be such a surprise, since you generally play the role of
corrector!
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2.7 Wonderful

Alice: Well, somebody has to. But this factor of 200 is shocking. Not only
that, it is probably more relevant for our N-body calculations than the first two
tests we did, as you already stressed. This is pretty terrible.

Bob: It is wonderful!
Alice: I beg your pardon?

Bob: It’s wonderful to have a factor of 200 to play with. Remember that I had
asked for a factor 100 improvement in speed? We can actually do it now! We
only need to determine which part of the code does at least half of the work,
and replace that by C code. We can then leave the rest in Ruby, and by getting
a speed-up of a factor 200 for half the work, the total speed of the code will
increase by a factor 100.

In general, my experience with N-body codes has shown me that for an N-body
integrator much more than half of the computer time is spent in just a few
lines of code. It is the innermost loop where the gravitational accelerations are
computed between pairs of particles, that takes almost all the time.

So the conclusion is: we should be able to speed up our Ruby codes by a factor
of 100.

Alice: That all sounds a bit too optimistic to me, but I see the logic of what
you say. Well, let’s try it out and see how far we get!
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Chapter 3

Tuning Ruby

3.1 Pairing Pairwise Calculations

Bob: Before we start adding pieces of C code to our Ruby code, let us first see
whether we can improve the speed of our N-body code purely within the Ruby
realm. As we discussed before, that should be the first step, even though the
second step, adding C, will buy us more in the end. We may as well get extra
speed from wherever we can.

Alice: So this means avoiding double work in pairwise interactions.

Bob: Exactly. What we have been doing so far was to let each particle de-
termine the acceleration it feels by interrogating all other particles. However,
the work done in calculating the gravitational acceleration from particle j on
particle

M
ai(ri,rj) =G -7 3 (I‘j — I‘i) (31)
ri — 1y

overlaps a lot with the work done in calculating the gravitational acceleration
from particle 7 on particle j:

m;

aj(rj,m) = G (r; —rj) (3.2)

vy — ;)

Subtracting the two position vectors, and determining the third power of the
magnitude of the difference is what takes most of the computer time. The minus
sign and the different mass multiplication factor is peanuts, in comparison.

Alice: So you suggest rewriting our N-body code in such a way as to allow both
calculations to be done simultaneously.

Bob: Exactly.

25
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Alice: That may not be so easy. Also, it may not be so pretty. I like the
modularity of our code, where each particle has its own job to do in finding
out how to determine the total gravitational acceleration it feels from all other
particles. I don’t like the idea of messing up everything by crossing levels of
command.

Bob: And I don’t like codes that are unnecessarily slow! At the very least we
have to try and find out. Only when we see what it really looks like, and how
much speed increase we really get, can we decide whether the increas of speed
is worth the decrease in prettiness, however you may want to define that.

Alice: Fair enough.

3.2 A Need for Library Structure

Bob: Tll try to be careful with giving names to directories and files. I must
admit, I'm getting a bit confused with all the different versions of N-body codes
we now have lying around.

Alice: We should soon decide upon a library structure, where we can store
those versions we are really happy with.

Bob: Yes. Now that we have a rather versatile N-body code, a general command
line argument interpreter, and a generator for Plummer’s model realizations, we
are beginning to put together a real N-body toolbox.

WEell, one thing at a time. It is crucial that we get good speed out of Ruby
first. And in order to keep track of our N-body versions, here is the file with
the definitons of the Body and Nbody classes, which we called rknbody . rb, after
we had finished our command line interpreter, in a directory I called vol-4.
Our Plummer’s model building versions live in directory vol-5, so let me put
a copy of vol-4/rknbody.rb in the current directory vol-6, and let me call
it nbody1.rb, for short, with the 1 indicating that we’ll probably make a few
different versions, for our various attempts at speedup.

Similarly, let me copy the driver from vol-4/rkn2.rb to the current directory,
and call it vo1-6/nb1.rb, with the one difference of course that the first line is
no longer

require "rknbody.rb"
but
require "nbodyl.rb"

since we just changed the name of that file, even though the contents are exactly
the same.
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Alice: You’d better keep some good notes! It is high time not only for making
a good library structure, but also for organizing our notes. How are we ever
going to present this to our students otherwise?

Bob: Yes, and we were going to define a good data format, remember, and
there is graphics, something we talked about many times, but never got around
too. People have no idea how much work it is to build a good foundation for a
software project. They think that an N-body code is just integrating Newton’s
equations of motion, well, how complex can that bed.

Alice: An understandable misunderstanding. Well, let’s hope we can get that
misunderstanding out of the way, when we get our act together.

Bob: And no act without speedup. Here we go! I'm copying nbody1.rb now to
nbody2.rb, and in parallel I'm copying nbl.rb to nb2.rb, with one distinction

Alice: . . . again the first line.
Bob: Yes: instead of

require "nbodyl.rb"
in nbl.rb, it now reads
require "nbody2.rb"

nb2.rb. I agree, there ought to be a better way. And I'm sure there is. But
first: speed!

Alice: No stopping you at this point!

Bob: I hope not. Give me a few minutes, and let me see how I can implement
a more economic pairwise acceleration calculation.

3.3 From Body to Nbody

Alice: Hi Bob! How’s your economic progress?

Bob: Fairly well, I think I just got it working. After scratching my head for a
bit, I realized that I had to move the method acc, to calculate the acceleration
between particles, from the Body to the Nbody class.

Alice: That’s interesting, and a big change. But now that you mention it, yes,
of course: a single body can only care about it’s own business. It can calculate
its own acceleration, but it wouldn’t be able to help others.

Bob: Unless it had double pointers. Remember my first attempt at writing an
N-body code, way back after we had finished playing with our 2-body version?
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You didn’t like my backward pointers, but they would have enabled one particle
to talk directly to another particle.

Alice: Directly, you say? You mean by pointing back to the parent Nbody class
instance, and from ther to another particle, crossing boundaries twice! If you
can that direct, that you may as well flatten the whole organization of the code
into one big fat pancake . . .

Bob: . . . how can the pancake be fat and flat?

Alice: At partial attempt at flattening can still look wobbly and fat. But my
point is: such an approach would go against any attempt at modularity.

Bob: Okay, okay, I wasn’t proposing to go back to that idea. For one thing, I
didn’t look forward to having to argue with you about double crossing pointers.

Alice: So you decided to lift the acceleration calculation from the Body class
to the Nbody class.

Bob: Yes. I've called it nb_acc now, instead of acc, and it got a bit more
complex, but not that much. Let me show them side by side. Here is the
old Body#acc, a somewhat confusing Ruby notation meaning the acc method
belonging to the class Body, but we may as well get used to it, since it is in
general use in the Ruby community.

def acc(body_array, eps)

a = Q@posx*0 # null vector of the correct length
body_array.each do |bl
unless b == self

r = b.pos - @pos
r2 = r*r + eps*eps
r3 = r2*sqrt(r2)
a += r*(b.mass/r3)
end
end
a
end

And here is Nbody#nb_acc, my new variation:

def nb_acc
null_vector = @body[0] .pos*0
@body.each{|bi| bi.acc = null_vector}
@body.each_index do |i]
bi = @body[il]
(i+1...@body.size) .each do |jl
bj = @body[j]
r = bj.pos - bi.pos
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r2 = r*xr + Qeps*Qeps
r3 = r2*sqrt(r2)
bj.acc -= r*(bi.mass/r3)
bi.acc += r*(bj.mass/r3)
end
end
end

3.4 Looping Options

Alice: That’s not much longer than what we had before. I see that you start
out by setting the acceleration to zero for each particle. This means that every
body now has an instance variable @acc, on the same level as @pos and @vel, I
take it?

Bob: Yes, and before doing any acceleration calculation, each particle’s @acc
has to be set to zero, so that it can accumulate contributions. A particle cannot
delay this action until it starts to calculate its own accelerations, since before

doing so, it may already receive contributions from other particles, as side effects
of their calculations.

Alice: Then you enter into a double loop over particles, something that you
would normally code in an double for loop, using the traditional i and j vari-
ables.

Bob: Yes, just as in the C test program, where we used:

for (i = 0; 1 < n; i++)
for (j = i+1l; j < n; j++)

Alice: It’s interesting to see the options that Ruby offers. You could have used
for loops here too, of course.

Bob: Yes, I could have used

for i in 0...@body.size
for j in i+1...GQbody.size

instead of

@body.each_index do |il
(i+1...@body.size).each do |jl

I guess I'm growing fond of the each method that lets Ruby do the counting,
rather than having to worry explicitly about reminding myself and the computer
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how long an array is, where to stop, and whether or not to include the upper
bound, using .. notation, or leave that one out, using .. ..

Alice: Remind me, what is the difference?

Bob: 1...3 counts over 1,2 only, while 1..3 counts over 1,2,3. The more
dots, the fewer points. I guess it the .. notation was chosen first as the most
obvious interpretation, and then ... was added as a practical after thought,
since it happens so often that we count through an array, starting at zero and
taking N terms, which means that we have to count up to but excluding the
Nth element.

Alice: You could have avoided mentioning the size of the array by writing;:

@body.each_index do |il
@body.each_index do |jl
if § > i

Bob: True, but since our aim is to speed up our calculations, I was afraid that
would get unnecessary overhead. Well, we can check later, when we do our
timings.

Alice: The rest of nb_acc is straightforward: after calculating the usual r vector
and r3 scalar values, you now get two accelerations for the price of one. Can
you show me what else you had to change in the program?

3.5 The calc Methods
Bob: I already mentioned the addition of an extra Body variable:
attr_accessor :mass, :pos, :vel, :acc

And the Body#calc method has simplified a lot. It used to be:

def calc(softening_parameter, body_array, time_step, s)
ba = body_array
dt = time_step
eps = softening_parameter
eval(s)
end

but in the new version it has become:
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def calc(time_step, s)
dt = time_step
eval(s)

end

The reason for this trimming down is that all the hard work of acceleration
calculations are now done on the Nbody level. The only job left to do on the
Body level is to add, subtract terms containing @pos and @vel and @acc, and
multiply those with coefficients and powers of the time step dt.

Consequently, the Nbody#calc method got trimmed down as well. Instead of:

def calc(s)
@body.each{|b| b.calc(@eps, @body, @dt, s)}
end

we now have:

def calc(s)
@body.each{|b| b.calc(edt, s)}
end

3.6 Integrators

Alice: Can you show me how this affect a simple integrator, such as our forward
Euler method?

Bob: It used to be:

def forward
calc(" @old_acc = acc(ba,eps) ")
calc(" Q@pos += @velxdt ")
calc(" Qvel += Q@old_accx*dt ")
end

while now we have:

def forward
nb_acc
calc(" @old_acc = @acc ")
calc(" Qpos += @velxdt ")
calc(" @vel += @old_accxdt ")
end
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You see, the line containing the acceleration is now much simpler, and the
whole expression is more homogeneous — but of course you first have to give
the instruction to do the global acceleration calculation, something that nb_acc

takes care off.

Alice: And the other methods are affected similarly.

Bob: Yes, but with one exception. The two Runge Kutta methods are changed
the way would expect them to change. Here is the second-order one:

def rk2
calc("
nb_acc
calc("
calc("
nb_acc
calc("
calc("

end

Q@old_pos = @pos ")

@half_vel = @vel + Qacc*0.5*%dt ")
@pos += @velx0.5%dt ")

Q@vel += Qaccxdt ")
@pos = Qold_pos + @half_velxdt ")

and here is the fourth-order version:

def rk4
calc("
nb_acc
calc("
calc("
nb_acc
calc("
calc("
nb_acc
calc("
calc("
calc("

end

Q@old_pos = @pos ")

@a0 = Qacc ")
@pos = Qold_pos + Q@vel*0.5xdt + Qa0+*0.125*dt*dt ")

@al = @acc ")
@pos = Qold_pos + @vel*dt + @al*(0.5*dt*dt ")

@a2 = Qacc ")
@pos = Q@old_pos + @vel*dt + (@al0+@al*2)*(1/6.0)*dt*dt ")
Quel += (Qa0+Qal*4+@a2)*(1/6.0)*dt ")

3.7 The Leapfrog

The exception comes in with the leapfrog method. I could have made a simi-
larly straightforward translation from the old version:
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def leapfrog
calc(" @vel += acc(ba,eps)*0.5%dt ")
calc(" Qpos += @velxdt ")
calc(" @vel += acc(ba,eps)*0.5xdt ")
end

But I did not like to ask the whole system to calculate all accelerations twice.
You see, at the end of each loop, we change only the velocity. This means that
the acceleration calculation at the beginning of the next step repeats exactly
the same calculation as we already did at the end of the previous, since the
acceleration is only dependent on the positions, not on the velocity. If we are
interested in speed-up, there is another potential factor of two in speed that we
can gain.

Alice: Let me try to remember, there must have been a reason that we wrote
it that way in the first place.

Bob: Yes, there was. You can’t skip the second call to acc, since otherwise
@vel would not be properly updated at the end of the step. But you can’t skip
the first call either, for two reasons.

The first reason has to do with start-up. When you take the very first step, there
is no previous information yet, so you just have to calculate the acceleration at
the beginning of the loop, in order to step the position forward.

The second reason is connected with our previous approach of letting each par-
ticle calculate its own acceleration, whenever needed, without introducing extra
variables unless we needed to do so. That made sense, since we were aiming
at clarity and brevity, rather than speed. But now we have to reconsider those
choices.

If we were to speed up the old approach, we would have to do two things:
acquire the initial acceleration in a special move at the start of an integration,
and introduce an extra variable @old_acc. However, in our new approach,
where we determine the integration on the Nbody level for all particles at once,
we already have the acceleration avaiable immediately after a call to nb_acc, for
each particle in the variable @acc. So the only thing left to do is to warm up
the engine before getting into an integration loop.

Here is how I implemented this:

def leapfrog
if @init_flag
nb_acc
@init_flag = false
end
calc(" @vel += Qacc*0.5*%dt ")
calc(" Qpos += @velxdt ")
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nb_acc
calc(" @vel += @acc*0.5%dt ")
end

The flag init_flag tells you whether the acceleration variables @acc have to be
initialized. And that flag is set, you guessed it, in the initializer for the Nbody
system, since it is within the Nbody class that the leapfrog method is used:

def initialize

@body = []
@init_flag = true
end

Alice: And in this way the initial nb_acc is invoked only one time. That’s a
nice solution, which hardly complicates the algorithm. And it is impressive that
for the leapfrog we now have a factor four in speed-up, at least with respect to
the calculation of pairwise gravitational attractions: we only visit each particle
pair once, instead of twice; and apart from the first round, each time the frog
leaps it calculations all accelarations only once. Great!

Bob: And that’s it! No further changes needed.

Alice: You did not touch the calculation of the potential energy? That is the
only other place where there are operations that scale with the square of the
particle number.

Bob: One thing at a time. Normally we don’t calculate the energy of the system
at every time step, but only when we ask for a diagnostics output. Even if we
lose a factor of two or four there, it will really make no difference in the total
speed.

This may chance when we start using C modules. If we really can get a speedup
of a factor 100 there, we may well have to revisit the energy calculation too.
Even if we calculate the energy, say, once every thousand time steps, carelessness
there could cost us a few tens of percent in total speed.

3.8 Brevity

Alice: I have one more suggestion for a change. Nothing to do with speedup,
only with making things look prettier. I bet you’ll like it.

Bob: What do you have in mind?

Alice: Remember that you tried so hard to make the individual lines of the
integrators look as simple as they did, back in the days that we were working
on the two-body problem? Well, now that you have brought the acceleration



3.8. BREVITY 35

variables in line with the position and velocity variables, we can finally grant
yuor wish!

Let me try a bit of regular expression magic. May 17

Bob: Sure you may! As you know, I love brevity. But let me call the new
version nbody3.rb, to keep our versions separate. Here is the keyboard.

Alice: It is the Nbody#calc that I would like to make just a bit more smarter.
In your last version it looked like this:

def calc(s)
@body.each{|b| b.calc(@dt, s)}
end

Are you ready for this? Here is a calc on steroids:

def calc(s)
@body.each{|b| b.calc(edt, s.gsub(/([a-z]\w*)/, ’@\&’).gsub(/@dt/, ’dt’))}
end

Bob: Ah, good old regular expressions! Let me see. Everywhere in the string s
you do two global substitutions, using gsub. First you take any substring that
starts with a lower case letter, followed by an arbitrary number of alphanumeric
characters — the name of a variable, I take it.

Alice: Precisely.

Bob: Then you take that name, and you add a @ symbol in front it in, because
\& just echoes the previous match of what was found in between the parentheses
there, namely the variable name.

Ah, T get it! You add all those annoying @ signs that are needed to tell Ruby
that we are dealing with instance variables. In that way we don’t need to add
those to the code of the integrators. Alice, you're a genius!

Alice: maa, nee.
Bob: What does that mean?

Alice: Oh, I guess I didn’t tell you that I started to take some Japanese classes,
just for fun. Occasionally I slip into classroom mode. Just ignore that.

Bob: But then there is a second global substitution. Why that? Let’s see.
Wherever you encounter an expression @dt, you replace it by dt. Ah, of course.
When you give every variable an @ sign, it is all nice and well for pos to turn
into @pos, and so on, but you will also turn dt into @dt, and that is too much
of a good thing. Got it!

May I rewrite the integrators? That will be fun!
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Alice: Go right ahead!

Bob: Let’s see, almost a global replace of @ by nothing, except for the @init_flag
in leapfrog, almost trimmed that one too, by mistake. Ah, that looks wonder-
ful. Just look at the fourth-order Runge Kutta:

def rk4
calc("
nb_acc
calc("
calc("
nb_acc
calc("
calc("
nb_acc
calc("
calc("
calc("

end

old_pos = pos ")

a0 = acc ")
pos = old_pos + vel*0.5*%dt + a0x*0.125xdt*dt ")

al = acc ")
pos = old_pos + velxdt + al*0.5xdtxdt ")

a2 = acc ")
pos = old_pos + velxdt + (a0+al*x2)x*(1/6.0)*dt*xdt ")
vel += (alO+al*4+a2)*(1/6.0)*dt ")

What a beauty!
Alice: Glad you like it!
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XX

4.1 Testing

Bob: And now it is time for Alice to say that it is time to test our codes, to
see whether they still all give the same output.

Alice: Let it be said.
Bob: Three particles should be enough to check:

|gravity> ruby mkplummer.rb -n 3 -s 33 > plum3.in
ruby: No such file or directory -- mkplummer.rb (LoadError)

We'll first run the old version:

|gravity> time ruby nbl.rb -t1 -d0.01 -s0.1 < plum3.in
/home/makino/papers/acs/1ib/clop.rb:310: warning: already initialized constant HELP_DEFINITII
==> The simplest ACS N-body code <==

Integration method: rk4

Integration time step: dt = 0.01

Diagnostics output interval: dt_dia = 1.0

Snapshot output interval: dt_out = 1.0

Duration of the integration: dt_end = 1.0

Softening length: eps = 0.1

./nbodyl.rb:167:in ¢/’: divided by O (ZeroDivisionError)
from ./nbodyl.rb:167:in ‘write_diagnostics’

from ./nbodyl.rb:86:in ‘evolve’

from nbl.rb:144

0.023u 0.003s 0:00.02 100.0%0+0k 0+0io Opf+Ow
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Here is my newer and hopefully faster version:

|gravity> time ruby nb2.rb -t1 -d0.01 -s0.1 < plum3.in
/home/makino/papers/acs/1lib/clop.rb:310: warning: already initialized constant HEL
==> The simplest ACS N-body code <==

Integration method: rk4

Integration time step: dt = 0.01

Diagnostics output interval: dt_dia = 1.0

Snapshot output interval: dt_out = 1.0

Duration of the integration: dt_end = 1.0

Softening length: eps = 0.1

./nbody2.rb:180:in ‘/’: divided by O (ZeroDivisionError)
from ./nbody2.rb:180:in ‘write_diagnostics’

from ./nbody2.rb:88:in ‘evolve’

from nb2.rb:144

0.037u 0.002s 0:00.03 100.0%0+0k 0+0io Opf+Ow

That looks good, no real changes here. And yes, it is faster, but not by as much
as I had hoped.

Here is your prettified brevity-rules version:

|gravity> time ruby nb3.rb -t1 -d0.01 -s0.1 < plum3.in
/home/makino/papers/acs/lib/clop.rb:310: warning: already initialized constant HEL
==> The simplest ACS N-body code <==

Integration method: rk4

Integration time step: dt = 0.01

Diagnostics output interval: dt_dia = 1.0

Snapshot output interval: dt_out = 1.0

Duration of the integration: dt_end = 1.0

Softening length: eps = 0.1

./nbody3.rb:180:in ‘/’: divided by O (ZeroDivisionError)
from ./nbody3.rb:180:in ‘write_diagnostics’

from ./nbody3.rb:88:in ‘evolve’

from nb3.rb:144

0.022u 0.004s 0:00.03 66.6%0+0k 0+0io Opf+0w

Alice: Also no surprises. Good! The same results in all three cases. I'm happy.
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Bob: But I'm not happy about the small speedup. Maybe having three particles
is too small a number. Let’s revisit the one time step that we did with 256
particles. Or better both one and two time steps, given that the first time step

had some extra overhead.

With the earlier version we had:

|gravity> (time ruby nbl.rb -t0.01 -d0.01 -e0
from nbl.rb:144
0.026u 0.000s 0:00.02 100.0%0+0k 0+0io Opf+O0w

.01 -s0.1 -02

plum256.

and

|gravity> (time ruby nbl.rb -t0.02 -d0.01 -e0
from nbl.rb:144
0.022u 0.003s 0:00.02 100.0%0+0k 0+0io Opf+O0w

.01 -s0.1 -02

plum256.

With our latest prettified version we have

|gravity> (time ruby nb3.rb -t0.01 -d0.01 -e0
from nb3.rb:144
0.037u 0.002s 0:00.04 75.0%0+0k 0+0io Opf+Ow

.01 -s0.1 -02

<

plum256.

and

|gravity> (time ruby nb3.rb -t0.02 -d0.01 -e0
from nb3.rb:144
0.039u 0.002s 0:00.05 60.0%0+0k 0+0io Opf+0w

.01 -s0.1 -02

<

plum256.

Alice: xxx

4.3 XXX

require "profile"

at the top of a file gives profiling information when you run the file.

in)

in)

in)

in)

|& tail

|& tail

|& tail

|& tail

|
N

|
N

|
N

|
N
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|gravity> time ruby nb3p.rb -tl1 -d0.01 -s0.1 < plum.in
plum.in:
0.000u 0.000s 0:00.00 0.0%0+0k 0+0io Opf+Ow

Hey, this and that.
Now all three:

|gravity> (ruby nblp.rb -t1 -d0.01 -s0.1 < plum.in) | & head -25 | & tail -10
plum.in:

and

(ruby nb2p.rb -t1 -d0.01 -s0.1 < plum.in) | & head -25 | & tail -10
and

(ruby nb3p.rb -t1 -d0.01 -s0.1 < plum.in) | & head -25 | & tail -10

so far.
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links

A link to Nitadori’s home page: Phantom-GRAPE: speedup on normal chips.!
i/ag

And a link to the GRAPE home page: GRAPE project: hardware speedup.?
More to be added here.

nil nil nil nil nil

lhttp://grape.astron.s.u-tokyo.ac.jp/~nitadori/phantom/
2http://astrogrape.org/
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Literature References

[to be provided]
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