
The Art of Computational Science

The Kali Code

vol. 5

Documentation:

Acsdoc

Piet Hut and Jun Makino

September 13, 2007

Contents

Preface 7

0.1 Acknowledgments . 7

1 Introduction 9

1.1 Documentation . 9

1.2 Dialogues . 11

1.3 Presentation Format . 12

2 Rdoc 15

2.1 Simple Elegance . 15

3 End of old version 17

4 Preface 21

5 Simple Example 23

6 Installation and other requirements. 25

6.1 Installing acsdoc . 25

6.2 System requirements . 25

7 Running acsdoc. 27

7.1 Input text file. 27

7.2 Source files. 27

7.3 Options . 28

7.4 Output files. 28

3

4 CONTENTS

7.5 Examples . 29

8 Tour over acsdoc funtionalities. 31

8.1 Sections. 31

8.2 Itemized list . 32

8.3 ”as is” text . 33

8.4 Holizontal line . 34

8.5 Including file . 34

8.6 Including program listing . 34

8.7 Including functions from source files 35

8.8 Including code flagments. 36

8.9 Including the output of some program 36

8.10 Boldface, italic, and typewriter font 40

8.11 Inline tex code. 40

8.12 Numbered equations . 41

8.13 Figures . 42

8.14 More on references . 43

8.15 Multiple input files . 43

8.16 Table of contents . 44

8.17 Links to external URLs. 44

8.18 Inline image . 44

8.19 Comments. 45

8.20 References . 45

8.21 Examples. 46

9 Initialization file 47

10 Wish lists 49

11 Tips 51

11.1 Change the document class for Latex 51

12 Known problems 53

12.1 tags in listing mode . 53

CONTENTS 5

12.2 section header just after the figure 53

13 Sandbox 55

6 CONTENTS

Preface

At the end of Volume 0, Alice and Bob briefly discussed the question of doc-
umentation. They then moved on, in Volume 1, to learn Ruby and to write
their first 2-body code in Ruby. While doing the reseach described in Volume 1,
they also made some notes about how to write Volume 1, and similarly in the
following volumes. However, after moving on to the N-body system in Volume
4, things just got too complicated to keep track of, and they decided to settle on
a more systematic way to record their adventures. After some discussion (see
chapter 1 in this volume) they choose to use Ruby for documentation as well as
for code writing.

The main idea of their writing system is to use a specially designed format,
called acsdoc, which in turn is a stand-alone variant of rdoc1. From each acsdoc
file, html or postcript or pdf files can be automatically generated.

For those readers who are interested in making a small contribution to our
project, in the form of some code extensions or other small tools, it is not
necessary to master the acsdoc format. However, for those of you who are
interested in writing a whole volume, either by yourself or in collaboration with
us, it is important to do so in acsdoc.

xxx (to be written:)

[In order to write in acsdoc, it is not necessary to go through this whole volume.
Instead, you can follow the instructions in A Quick Introduction to Acsdoc,
which can be found at xxxxx. Of course, if you really like to know what we did,
how we did it, and most importantly, why we did it, by all means, read on, and
follow all the details!]

0.1 Acknowledgments

We thank xxx, xxx, and xxx for their comments on the manuscript.

Piet Hut and Jun Makino

1http://rdoc.sourceforge.net

7

8 CONTENTS

Chapter 1

Introduction

1.1 Documentation

Alice: Now that we got so far at to write actual N-body codes in Ruby, with
a rich variety of integratorsk it is high time that we begin to write some docu-
mentation.

Bob: I don’t like writing documentation.

Alice: How about reading documentation?

Bob: Well, it depends. If it is written well, and if it is useful, of course I like
it. But so much documentation is neither written well nor useful, whether it
is a manual that comes with a new DVD player or instructions to fill out your
tax form. And software documentation especially seems to lack clarity, in many
cases.

Alice: What do you find lacking?

Bob: For one thing, it is often too short to be useful. It is written as an
afterthought, by someone who already has been working on a project for a
long time. As a result, this person can no longer imagine what the original
problems where, and probably not even what led him or her to the original
design decisions. Typically, reading a software manual is like walking into a
theater in the middle of a movie. Lots of action, but hard to say what is going
on, or why.

Alice: So, let’s do things better then. Why don’t we keep notes of all of our
conversations, and present those to the users of our software, our students or
whomever else will find our codes on the web?

Bob: Surely you are joking. Notes of all of our conversations? That will quickly
produce a few shelves worth of books!

9

10 CHAPTER 1. INTRODUCTION

Alice: As long as we keep it all online, who cares how many shelves would be
stacked with printed versions. The point is to have it available, later, both for
ourselves and others. And we don’t have to write up every scrap of dialogue
between us: we can certainly distill it a bit. But it should retain the flavor of a
dialogue, rather than a laundry list of things-to-do and things-done.

Bob: You seem to be serious! Do you have any idea of how much work this will
be?

Alice: It will be quite a bit of work, but I think that not doing so will be even
more work.

Bob: Huh?

Alice: I mean, if we don’t write notes about the whole process of code devel-
opment, we are destined to spend more time later trying to reconstruct it. Just
imagine what will happen. We start with a few nice toy models. Some students
come and make some extensions. Before we know it, they or we or both use it in
a little research project. Then, a few months later, we want to extend its use for
another research project. By that time everyone will have forgotten the details
of how the code was modified at which stage, and how the code was designed
in the first place.

Now imagine the alternative. We keep notes about our discussions even before we
type the first key stroke of a program. In doing so, we summarize what we think
the problem is, and the way we think we can solve the problem. Then, while we
write the code, and while we keep changing it, we also realize that the way we
look at the problem keeps changing. So everything will be in flux: questions,
answers, methods, approaches. But, because we keep some notes during each
session, at any stage we can go back and check to see what happens.

So half a year later, a student comes into your office, and asks you questions
about a piece of code. Instead of taking a deep breath, and steadying yourself
for an hour of digging and trying to remember, you just smile and hand the
student the URL of our conversation notes. The students happily leaves your
office, and you happily continue your own work.

Bob: I must say, that sounds almost idyllic.

Alice: and here is another thought experiment. You yourself want to extend
a piece of code you wrote a year ago. You vaguely remember that you stopped
development on that code because something wasn’t quite right. However, you
can’t remember what wasn’t right. Was it that you had to give a conference
presentation on another topic, so you had to stop working on the code, and never
got back to it? Or was it that you realized that the underlying idea had some
logical problems in some cases? Or did you just loose interest in the problem?
Or did you find that another piece of code by someone else already did the job
and you used that?

If you had gotten into the discipline of always making notes during each session
of working on your code, you would never have to scratch your head in such a

1.2. DIALOGUES 11

case; you’d just look up what happened. And what I just described is only the
top layer. If you decide to continue working on the code, it would be wonderful
to be able to refresh your memory about the many details that went into the
design process in the first place.

Bob: I must admit, that also sounds good, but I’m afraid it sounds too good to
be true. If it is a matter of just a few notes, the information will be hopelessly
incomplete. On the other hand, if we had detailed notes for every session that I
worked on a code, I’m not sure that I could retrieve the information I wanted.

So I don’t think it will work. Just listing: “I did this, because of that, and then
I did such in order to do so” does not generate a very interesting document. In
order to make it useful, you’d better provide some good structure. But doing
so takes time: it would be like writing a paper, each time you write a piece of
code!

1.2 Dialogues

Alice: You put your finger on the problem. And your last point shows to me
what is so nice about a dialogue. Just listing what happened will be dry and
boring, and indeed hard to read later on. But if we recreate a dialogue between
the two of us, we can tell our students and colleagues how and why we did what,
in a natural flow of arguments.

Bob: Like Plato’s dialogues?

Alice: Perhaps more like the dialogues that Galileo wrote. But let’s leave out
Simplicio, and just take two able researchers.

Bob: You and me?

Alice: Why not?

Bob: Hmmm. I doubt that it would be practical. You’re not going to tape our
conversations, are you?

Alice: Oh no, that would be too much work and also it would give far too
much material. Instead, we’ll make our written dialogues much shorter than
the real-life ones.

Bob: So you want to distill our wisdom?

Alice: Yes, distilling is I guess how you could say it, but in the process we’ll
distill our whole experience, from wisdom to foolishness. It is essential to show
what problems we ran into, how we found out that there were problems, how
we traced the roots of those problems, and finally how we found solutions . . .

Bob: . . . with much trial and error.

Alice: Exactly. For students it will probably be interesting to see how we go
about problem solving, and for colleagues at least it will give them a precise

12 CHAPTER 1. INTRODUCTION

idea of why we choose our design details the way we did. When they can see
the whole path of development, they have much more of a basis to agree or
disagree. To the extent that they agree with our approach, they can then add
more material to our codes in the same spirit. And to the extent they disagree,
it will be easier for them to point out exactly where they part ways with us,
and why.

Bob: Well, I’m sure it will be interesting for the students for another reason
too.

Alice: What do you have in mind?

Bob: I’m sure they’ll enjoy seeing us making mistakes! It will make them feel
better, I’m sure.

Alice: Good point. I remember when I started programming, how stupid I
often felt when something didn’t work right away.

Bob: Until you found out that in programming almost always things dont’ work
right away.

Alice: Exactly. Okay, let’s do it!

Bob: Wait. If we really want to put all our mistakes on paper, perhaps the
students will enjoy seeing our first half dozen or so mistakes, but at some point
even they will get bored.

Alice: So we’ll have to be creative in our distillation process. For example, in
the first few volumes we can show them how we stumbled here and there, trying
to learn Ruby, for example. But further on, we can polish the presentation.

Bob: It will seem then that we will become very smart very quickly, in rather
unrealistic ways.

Alice: Sure, but that’s fine. For the record, let’s just note here that all similari-
ties between the Bob and Alice of our dialogues and actual astronomers present
or past is completely accidental!

1.3 Presentation Format

Bob: I must say, you’re making a strong case for writing dialogues. I’m willing
to give it a try.

Alice: okay, let’s get started right away! Remember the conversation we had
when we saw each other over coffee, and asked each other what our research
plans were? That’s how we got this idea of writing some code for toy model
simulations of dense stellar systems.

Bob: I guess we can reconstruct a dialogue along those lines. That will be a
good place to start, since we were just chatting. It will become more complicated
once we try to reconstruct how we learned to work with Ruby, how we coded up

1.3. PRESENTATION FORMAT 13

the two-body problem, how I got carried away with adding yet more integrators,
and so on.

But already with the first volume, a pure dialogue, how do you want to write
that, in what form? Plain text is not very helpful. At the very least we want to
put that material on the web, to make it accessible to our students and others
who may be interested.

Alice: But I don’t like writing everything in HTML. For one thing, mathemat-
ical equations don’t lend themselves very well to that medium. For another,
I like to make printouts, especially of complex codes and of text with many
equations, and I far prefer LaTeX for that purpose.

Bob: There are programs that can translate LaTeX to HTML, but from what
I’ve seen, they are not doing a very good job. Perhaps a better alternative
would be to start with a third medium, from which we can then produce both
postscript output, like with LaTeX, and HTML output, for web sites.

Alice: Do you have any particular example in mind.

Bob: XML is being advertised as a lingua franca for exactly these purposes,
but I’m a little hesitant to make a jump in that direction. Everything I’ve seen
is rather cumbersome, at least on the level of writing XML directly, even though
the basic idea is fine. The problem is that the XML source is almost unreadable,
with even more markers and flags and begin-this and end-that than you already
have in HTML.

Alice: How do people then work with XML in practice?

Bob: I presume they use an editor that allows them to add all the extra infor-
mation, where needed, without showing it all on the screen.

Alice: A bit like the WYSIWYG, what-you-see-is-what-you-get, way in which
many text editors nowadays show you what will be printed, rather than what
the special symbols are that you type in order to get there?

Bob: Yes. Unlike emacs or vi, which show the full LaTeX commands, you could
imagine working with an editor that would produce the LaTeX output directly
in a window, while giving you a menu from which you can pick the directives.

Alice: Probably somebody has already written such a thing.

Bob: I bet. However, I’m used to good old ascii coding in editors where you
can exactly see what you put in.

Alice: Me too. I really don’t like having to click a mouse at every point along
the way. Besides, if the input is in ascii, you know for sure that you will still
be able to read that material ten years from now. If you write it in some form
of ‘easier’ format, it is quite likely that some day you won’t be able to decode
anymore what you wrote!

Bob: I couldn’t agree more. So I must admit, I don’t like the XML solution
very much, if it would mean working with a WYSIWYG editor. Besides, what

14 CHAPTER 1. INTRODUCTION

would such an editor show you on the screen? HTML output format? LaTeX
output format? A third type of output format? None of them would cover all
the bases.

Alice: Have you tried writing XML that way?

Bob: No, though I came close. Recently, I was thinking about using some XML
for documenting some of my codes, so I looked around on the web, to see what
kind of editors were available. Unfortunately, the good ones all seemed te be
commercial products, and I couldn’t find anything in the open-source domain
that looked appealing.

Alice: There is nothing wrong with paying for a software package.

Bob: Indeed, I’d be happy to pay for a good piece of software. However, when
I do so, I need to be convinced that I will use it often enough to make it worth
the investment. And even more importantly, I do want to have access to the
source code, if I’m going to use it as a foundation for some of my own code
development.

Alice: Those are good points. If we are going to use XML, we would want our
students to join in and write extensions of what we’re doing. If they first need to
buy an expensive editor before they can even start working with our software,
that wouldn’t be ideal. And yes, it would be much better if they would have
direct access to the source text of our dialogues as well as the source of our
codes.

Bob: So let me look what alternatives there are available. There must be others
who came up to the same dilemmas as we have just summarized. I’ll do a web
search, and with a little luck I may come across a better system. I’ll let you
know!

Chapter 2

Rdoc

2.1 Simple Elegance

xxx

nil

15

16 CHAPTER 2. RDOC

Chapter 3

End of old version

This is as far as we wrote this volume, originally.

In the following part, we present a first draft of a new introduction.

Introduction to ACSDOC
Piet Hut and Jun Makino

18 CHAPTER 3. END OF OLD VERSION

Contents

19

20 CONTENTS

Chapter 4

Preface

This is a short introduction to ACSDOC, a document-processing system which
can generate latex or html files from a common, easy-to-write text.

21

22 CHAPTER 4. PREFACE

Chapter 5

Simple Example

The following is a simple example.

= Simple Example

This is a simple example.

This one creates the output shown in figure 5.1

Here, what is shown is the LaTeX output created by

acsdoc.rb --tolatex simplexample.ok
latex simplexample.tex

You can also create an HTML page by

acsdoc.rb simpleexample.ok

This command create a single HTML file, simpleexample.html, at the same
directory as the source .ok file lives.

Here1 is the created HTML file.
1../examples/simpleexample.html

Figure 5.1: TeX output of simpleexample.ok

23

24 CHAPTER 5. SIMPLE EXAMPLE

Chapter 6

Installation and other
requirements.

6.1 Installing acsdoc

Acsdoc is provided as part of the ACS software system. It can be installed
as a stand-alone software. acsdoc.rb is a single Ruby source program which
require no other Ruby library files or whatsoever. So you can just copy it to
your preferred location.

Documents are all written in acsdoc format, and can be created by

make documents

at the directory where the files are extracted from the archive.

We plan to offer some more ”packaged” way to install the command and docu-
ments.

6.2 System requirements

Acsdoc has been tested on some distributions of Linux. It depends on UNIX
operating system, and uses following commands/softwares

• mv, rm, cp, cat, csh

• convert from ImageMagick

• latex, dvips

25

26 CHAPTER 6. INSTALLATION AND OTHER REQUIREMENTS.

• latex ”subsubsection” package

Dvips needs to understand options -E, -l, -x. If these options are not avail-
able with your dvips, well, you need to modify ascdoc.rb to supply appropriate
options.

Chapter 7

Running acsdoc.

Syntax to invoke acsdoc is the following.

% acsdoc.rb [options] [source files] infile ...

Here, [options] are command line options, [source files] are name of the
program source file used in listing, infile is the input text file.

In the following I’ll describe the meaning of command line arguments.

7.1 Input text file.

Infile is the input text file. Its format is described in more details in chapter
8. One can supply multiple input files in the case of the HTML generation. For
Latex, only one file can be used. The name of an input text file should end with
.ok.

7.2 Source files.

Source files are the files used in including partial codes. The use of them
is described in sections 8.8 and 8.7. Currently, files with extention .rb are
recognized as Ruby source file, .c C program, .C and .cc C++ programs.
Support on C/C++ programs is rather primitive and might not serve your
need.

27

28 CHAPTER 7. RUNNING ACSDOC.

7.3 Options

--directory dirname

This option makes the generate HTML file and additional image files etc to be
moved to directory dirname. Option argument dirname must exist. If directory
dirname does not exist, it is created.

Note that this option is ignored if --tolatex option is specified.

--keep-dot-files

This option is retained for backward compatibility. It has no effect.

--reuseoutput

This option controls if the output of inline commands (see section 8.9 for details)
will be reused from previous run of acsdoc. If this option is not specified,
all commands are newly ran on the fly. If this option is specified, and if the
command appears in the same line of the text input file in the same form, the
output of previous ran is reused.

--tolatex

Generate a Latex output instead of HTML. Default is HTML. If this option
is specified with multiple text input files, the result might not correct. Latex
mode is meant to be used with single input file.

If you want to process multiple input files for generating single Latex file, just
create one input file by using cat.

7.4 Output files.

By default, one HTML file is created for each of one text input file. If --tolatex
option is specified, one Latex file is created for one text input file, and you are
not supposed to give multiple input files.

There are quite a few other files generated. The image files will be stored in
.imgs directory. Thus, if you have multiple input files which are processed
separetely, i.e., if you do

% acsdoc.rb text1.ok
% acsdoc.rb text2.ok

In one directory, The content of .imgs directory created in the first command
is overwritten by that of the second command. To avoid this, use --directory
option (see section 7.3 for more details) to put output files to subdirectories.

Acsdoc also create a CSS file, .acsdoc-style.css, which is referenced from
HTML file. By default, the content of this CSS file is the same for any output,
but it would change when the version of acsdoc.rb changes.

7.5. EXAMPLES 29

Finaly, acsdoc creates a number of fragment files from source files specified in
the command line. For example, for file foo.rb, there will be a number of files
with name starting with .foo.rb (since the name of generated files start with
a ”.”, they do not appear when you do normal ls without -a option).

7.5 Examples

% acsdoc.rb introduction.ok

createss a single HTML file introduction.html.

% acsdoc.rb -d documents introduction.ok

creates a single HTML file introduction.html and store it to directory documents.

% acsdoc.rb test.rb segmentsample.rb introduction.ok

process the source files test.rb and segmentsample.rb to prepare fragment
files used in introduction.ok, and then creates an HTML file.

% acsdoc.rb introduction.ok sample.ok

creates two HTML files, introduction.html sample,html, and add navigation
links to these HTML files. The section (or chapter) numbers are as if these two
HTML files are part of a single document.

30 CHAPTER 7. RUNNING ACSDOC.

Chapter 8

Tour over acsdoc
funtionalities.

Markups in acsdoc is largely similar to that of Rdoc or RD, but not exactly the
same. Here we overview what is available with acsdoc.

8.1 Sections.

One can start a new section (or subsection or chapter) by ”=” (multiple ”=”
such as ”==” or ”===” result in deeper level, like 1.1 or 1.1.1)

The following is a sample for deep sections.

= First level section

This must be section 1

== 2nd level section

Here is section 1.1

=== 3rd level section

Here is section 1.1.1

= More sections

Here is section 2.

31

32 CHAPTER 8. TOUR OVER ACSDOC FUNTIONALITIES.

Here1 is the created HTML file.

Up to five levels are supported, at least with HTML document. Number of
levels available in Latex document depends on what is available on Latex. By
default it is three.

8.2 Itemized list

What you can do with

 or

in HTML, or \begin{itemize} or \begin{enumerate} in Latex, you can do in a
simpler way.

For example,

Sample list
* Item 1.
More text for Item 1.

* Item 2
More on Item 2.

gives

Sample list

• Item 1. More text for Item 1.

• Item 2 More on Item 2.

A nested list can be made in the following way

Nested list
* Item 1.
More text for Item 1.
* nested item 1
* nested item 2

* Item 2
More on Item 2.

1examples/sectionssample.html

8.3. ”AS IS” TEXT 33

gives

Nested list

• Item 1. More text for Item 1.

– nested item 1
– nested item 2

• Item 2 More on Item 2.

Numbered list
1. Item 1
2. Item 2

gives:

Numbered list

1. Item 1

2. Item 2

Note that the identifier for numbered list is numnber + ”.”. The number itself
is not used in actual numberiing. Thus,

Wrongly numbered list
1. Item 1
1. Item 2

gives

Wrongly numbered list

1. Item 1

2. Item 2

8.3 ”as is” text

Text lines which start with a space, where this space is not followed by *, -, or
a number + ”.”, appear as is.

Example:

This is as-is text

This can be used to show program list etc.

34 CHAPTER 8. TOUR OVER ACSDOC FUNTIONALITIES.

8.4 Holizontal line

Three or more ”-” characters

will be converted to

Note that it should start at first column. If any space is before ”-”, it becomes
”as is” text.

8.5 Including file

#:include: test.rb

(without "#") gives:

test.rb
def test

p test
end

test

Note that this is exeption for the as-is text, since this :include: directive is
interpreted even when it appears with preceeding space characters. Also, space
characters before the :include: directive are added to each line of the included
file. Thus

#:include: test.rb

(without "#") gives

test.rb
def test

p test
end

test

8.6 Including program listing

You can use :inccode: in place of :include:. This may shows the included text
in slightly different way.

Include:

8.7. INCLUDING FUNCTIONS FROM SOURCE FILES 35

test.rb
def test

p test
end

test

Inccode:

test.rb
def test

p test
end

test

In HTML, currently there is no difference. In Latex, :inccode: gives two hori-
zontal lines marking the included code.

8.7 Including functions from source files

For C/C++ or Ruby sources, an automatic way to include one function from
source code is provided. In Ruby, to include the listing of function buz fom class
(or module) Bar in file foo.rb, you can write

:include: .foo.rb+buz+Bar

For exaple, ":include: .acsdoc.rb+wordmarkup+Acsdoc" gives

def wordmarkup(instr)
@@wordreplace.each do |x| instr.gsub!(x[0]) do |word|

$1 + x[1]+ " " + $2 +x[2] + $3
end

end
instr

end

If buz is the only function with that name in that file, or if buz is the top-level
function, you can omit the class name as

:include: .foo.rb+buz

The names of source files should be given to acsdoc.rb as command-line argu-
ments. They should appear before real .ok files in the argument list.

36 CHAPTER 8. TOUR OVER ACSDOC FUNTIONALITIES.

8.8 Including code flagments.

It is also possible to inclde a specified region from a source file. The region
is (in the source file foo.rb) marked by "# :segment start: bar" and "#
:segment end: bar" (here, bar can be some arbitrary name, without space
or other special characters), and is included by

:include: .foo.rb-bar

For example, if the source file segmentsample.rb is the following:

class Test
def test

p "test called"
end

end

:segment start: body
a= Test.new
a.test
:segment end: body

By

:include: .segmentsample.rb-body

We can get the following:

a= Test.new
a.test

8.9 Including the output of some program

There are followng seven directives to run commands

• :output:

• :command:

• :commandoutput:

• :commandinput:

• :commandinputoutput:

8.9. INCLUDING THE OUTPUT OF SOME PROGRAM 37

• :commandinputoutputnoecho:

• :commandinputoutputinteractive:

and one additional directive

• :prompt:

The directives to run commands can have variations with ”save”, like

• :commandoutput:

• :commandoutputinputoutput:

When these ”save” variations are used and acsdoc is invoked with ”–reuseoutput”
option, acsdoc.rb look for the output of the same command previously executed
(from its hidden data directory), and if the same command line is found at the
same location of the input .ok file, corresponding output is taken from the saved
result of previous run of acsdoc.rb.

Directive :output: echo foo

gives

foo

Directive :commandoutput: setenv LANG C ; date

|gravity> setenv LANG C ; date
Thu Sep 13 23:07:54 JST 2007

Directive :command: echo test

gives nothint as output, but it is stull executed. Thus, it can be used to do
whatever things you like.

Directive :commandoutput: echo test gives

|gravity> echo test
test

Directive :commandinput: cat > aho END requires actual input data followed
by ”END”, like

38 CHAPTER 8. TOUR OVER ACSDOC FUNTIONALITIES.

:commandinput: cat > aho END
#aaa
#bbb
#ccc
#END

Running this (without #) shows the input and in this case create a file ”aho”

You can check if the file ”aho” is made by:

:commandoutput: ls -al aho; pwd
:commandoutput: cat aho
:command: rm aho

The result is:

|gravity> ls -al aho; pwd
-rw-r--r-- 1 makino makino 12 Sep 13 23:07 aho
/home2/makino/acs/kali/vol/documentation
|gravity> cat aho
aaa
bbb
ccc

Directive :commandinputoutput: cat END is similar to :commandinput:, but
shows the result in text.

:commandinputoutput: cat END
aaa
bbb
ccc
END

This (without #) gives you

|gravity> cat
aaa
bbb
ccc
aaa
bbb
ccc

8.9. INCLUDING THE OUTPUT OF SOME PROGRAM 39

Finally, :prompt: xxx> changes the prompt to ”xxx>”.

Thus,

:prompt: yebisu>
:commandoutput: echo test

gives

yebisu>echo test
test

The ”interactive” variant shows the input data at the location of corresponding
ruby ”gets”. It works only with a ruby program which uses ”gets” function to
read input from STDIN. Here is one example:

yebisu>ruby testinteractive.rb
enter x:1
enter y:2
1.0 2.0---

This is made with:

: commandinputoutputinteractivesave : ruby testinteractive.rb END
1
2
END

The file testinteractive.rb is

STDERR.print "enter x:"; x =gets.chomp.to_f
STDERR.print "enter y:"; y =gets.chomp.to_f
print x, " "
print y

40 CHAPTER 8. TOUR OVER ACSDOC FUNTIONALITIES.

8.10 Boldface, italic, and typewriter font

Boldface, italic, and typewriter font are available. This part is generated
from:

Boldface, italic, and <tt>typewriter font</tt>

For single word (without no space), you can use a more compact form

Sample *boldface*, _italic_, and +typewriter+ fonts.

which will look like:

Sample Boldface, italic, and typewriter fonts.

These markups (probably) do not work within listing. It should work with
itemized list.

• boldface in an item.

8.11 Inline tex code.

Any tex code fragment can be embedded using the following form

<tex> tex codes </tex>

It can span to multiple lines. For example,

Here, <tex>$a= b$</tex> is a sample inline tex code.

gives

Here, a = b is a sample inline tex code.

Since the use of tex codes is mostly to embed math formulae, one can write

<$ tex codes$>

instead of

<tex>$ tex codes $</tex>

Thus,

Here, <$a= b$> is a sample inline tex code.

gives

Here, a = b is a sample inline tex code.

8.12. NUMBERED EQUATIONS 41

8.12 Numbered equations

The following form:

:equation:
\label{equationlabel}
a=b.

(without ”#”) gives

a = b. (8.1)

The texts after :equation: directive (untill a blanck line) will be processed in
Latex equation environment. Equation numbers are maintained within acsdoc.
Anything which can be written in Latex equation environment can be used. To
refer to the above equation, you can write

equation ref(equation label)

which gives ”equation 8.1.” The label cannot contain space.

Latex eqnarray environment can be used as

:eqnarray:
\label{arrayeq}
a &=& b,\nonumber\\
c &=&d.

a = b,

c = d. (8.2)

Note that the equation number counter of acsdoc assumes that only one number
is used even when eqnarray is used. Thus, if you do

:eqnarray:
\label{arrayeq}
a &=& b,\\
c &=&d.

You get:

42 CHAPTER 8. TOUR OVER ACSDOC FUNTIONALITIES.

Figure 8.1: The ACS logo

a = b, (8.3)
c = d. (8.4)

However, the next equation will have wrong number like:

E = mc2. (8.5)

8.13 Figures

As in latex, one can make numbered figures. The syntax is

:figure: sample.gif 5cm acslogo
The ACS logo

Which gives figure 8.1.

Here, sample.gif is the name of the image file, which can have any format which
is understood by ”convert” command of ImageMagick. 5cm is the horizontal
size of the image (meaningful in Latex conversion only), and acslogo is the label.
The text in the next and following lines, untill a blank line appear, become the
figure caption. Thus, this figure can be refereed to by

Figure ref (acslogo)

8.14. MORE ON REFERENCES 43

(without space between ref and (acslogo)). Here is reference to this figure: figure
8.1.

Note that the size of an embedded postscript file, say foo.eps, may be too small
for the html output. In such a case, you can for example double the size of the
figure by converting it to a gif file, with the following command:

convert -density 200x200 foo.eps foo.gif

8.14 More on references

A section (or chapter) can be labeled by the :label: directive as

:label: label

For examle, this section is labeled as

:label: moreonreferences

And can be referenced as

Section ref (sect:moreonreferences) is this section.

Here is the output:

Section 8.14 is this section.

8.15 Multiple input files

When acsdoc is applied to multiple input (.ok) files, multiple HTML files (one
for one .ok file) is created, but each file will have navigation links to ”previous”
and ”next” files. The order of the files is simply the order given in the command
line argument.

The navigation link has ”Up” entry, which by default does not point to an URL.
It can be specified by setting a value in the initialization file as

@@toppagefilename= "some_file_name"

For example,

@@toppagefilename= "../index.html"

would point to index.html in the parent directory.

44 CHAPTER 8. TOUR OVER ACSDOC FUNTIONALITIES.

8.16 Table of contents

The :tableofcontents: directive creates the table of contents. Example:

:tableofcontents:

It should appear as only word in one line.

8.17 Links to external URLs.

One can use <web> tag to make links to external URL. For example,

< web >http://www.artcompsci.org|ACS homepage</web>

(whithout spaces) creates a link: ACS homepage2.

If you specify just like <web>name</web>, it is assumed same name is speci-
fied for text and url, like acsdoc.rb, which is generated from

< web >acsdoc.rb< /web >

(whithout spaces).

8.18 Inline image

If you want to have an inline image, you can use the form

link: image_file

(without space after ”:”). For example,

link: sample.gif

gives
2http://www.artcompsci.org

8.19. COMMENTS. 45

Note that ”link: ...” should appear as single line without other words.

Note that here the link is a direct link to the image file. Thus, if you move the
generated HTML file by ”–directory” option or by hand, you need to guarantee
that image files are in the correct location.

8.19 Comments.

Lines starting with # in the first colums are treated as comments and not further
processed.

8.20 References

As in latex with natbib style file, one can make two types of citetation in the
text, such as

< citet >MakinoHut2006</ citet>
< citep >MakinoHut2006</ citep>

(without whitespaces). Actual reference entries should have the form:

< REF >

Aarseth, S. J. | 1963 |Aarseth1963| MNRAS, 126, 223

Makino, J.; Hut, P. | 2006 |MakinoHut2006| ACS

Barnes, J. E.; Hut, P. | 1986 |BarnesHut1986|Nature, 324, 446

< /REF >

Each of the reference entries consists of four fields, separated by ”—”. One
entry can consist of multiple lines, since the separator between reference entries
are two consective newlines.

The first field of a reference entry is the list of authors. Authors must be
separated by ”;”, and the familiy name, with single ”,” at the end, should
appear first.

The second field is the publication year.

The third field is the tag, to be refered in the text.

The 4th fieled is the actual bibiliographic data.

Here is the citettion to Knuth: Knuth (1992).

46 CHAPTER 8. TOUR OVER ACSDOC FUNTIONALITIES.

8.21 Examples.

All of the functionalities described in this document is used in this document.
So the best place to look at examples is the input file itself3.

3ch05.ok

Chapter 9

Initialization file

Initialization file is searched in the order of $ACSDOCINITRC, ./.acsdocinitrc,
and ∼/.acsdocinitrc. The things you can write in the initialization file is Ruby
statement. A typical way to use is something like:

acsdoc initialization file
print "Loading the initialization file for ascdoc\n"
@@addtional_preambles_for_inline_tex = "\\usepackage{epsf}"
@@addtional_commands_for_inline_tex = "\\input macros"

This one allows the use of epsf package (style file), and macros.tex is included
after \begin{document}.

47

48 CHAPTER 9. INITIALIZATION FILE

Chapter 10

Wish lists

• tables

49

50 CHAPTER 10. WISH LISTS

Chapter 11

Tips

11.1 Change the document class for Latex

To change the document class, supply appropriate value to variables @@basic preambles for tex
and @@headers in the initialization file (.acsdocinitrc). For example,

@@basic_preambles_for_tex = <<END
\\documentclass{article}
\\usepackage{graphicx}
END
@@header=[
"chapter","section","subsection","subsubsection",
"subsubsubsection", "subsubsubsubsection"]

is appropriate for article class. First item of @@header is not used. Default is
”book” class.

51

52 CHAPTER 11. TIPS

Chapter 12

Known problems

12.1 tags in listing mode

Most tags show themselves up correctly in listing (lines with preceeding space)
mode, but

<tex>

and

<web>

are two exeptions, at least with current (as of Nov 21 2005) version of acsdoc.rb.
You need to type

\<tex>

or

\<web>

even in listing mode.

12.2 section header just after the figure

section header (=== etc) just after figure entry seems to be processed incor-
rectly. If you add one more newline between figure data and section header, it
works fine. (May 2 2006)

53

54 CHAPTER 12. KNOWN PROBLEMS

Chapter 13

Sandbox

Hmm, $, ?, ...

Are, does blank line still work as new paragraph?

This should be a new paragraph.

This also.

This is as-is text with some tags <xxx>, <tt>, , \begin{xxx}

Hmm.

nil nil nil nil nil

55

56 CHAPTER 13. SANDBOX

Bibliography

Knuth, D. E., 1992, Literate Programming, Center for the Study of Language
and Information - Lecture Notes

57

