
The Art of Computational Science

The Kali Code

vol. 6b

User Interface:

Command Line Arguments II

Piet Hut and Jun Makino

September 13, 2007

Contents

Preface 5

0.1 Acknowledgments . 5

1 The New Nbody Driver 7

1.1 Code Listing . 7

1.2 Testing . 11

1.3 Checking . 12

2 XXX 15

2.1 xxx . 15

3 XXX 17

3.1 xxx . 17

3.2 No Retrofitting . 17

3.3 xxx . 18

4 Literature References 19

3

4 CONTENTS

Preface

In the previous volume, a general framework has been sketched for a command
line options parser, and a specific Ruby implementation has been provided. In
the current volume, that implementation is used to provide a user interface
for N-body experiments. Driven by user demand, a number of extensions are
added to the basic program, to make it even more useful as a practical interface
between the user and an N-body code.

0.1 Acknowledgments

We thank xxx, xxx, and xxx for their comments on the manuscript.

Piet Hut and Jun Makino

5

6 CONTENTS

Chapter 1

The New Nbody Driver

1.1 Code Listing

Alice: With our new command line options parser in hand, it is time we see it
at work for our N-body code.

Bob: That will be easy. Remember that I have already replaced my first
attempt at parsing the command line, in rkn1.rb, by a new driver version, in
rkn2.rb.

Alice: Yes, you showed me that it contained mainly the ‘here document’, which
we specified before you even started writing the Clop class. Apart from them,
it contained only a few lines of code, just enough to create an N-body system,
read it in, and start the integrator.

Bob: Indeed. Let me list it again:

require "../command_line/clop.rb"

This does not work, since there is a new "clop.rb" in this same directory
that will be loaded anyway
#
$acsdate="20050303"
require "acsrequire"
acsrequire "clop"

require "rknbody.rb"

options_definition_string = <<-END

Description: The simplest ACS N-body code

7

8 CHAPTER 1. THE NEW NBODY DRIVER

Long description:
This is the simplest N-body code provided in the ACS environment
(c) 2004, Piet Hut and Jun Makino; see ACS at www.artcompsi.org
It offers a choice of integrators, for constant shared time steps.

Short name: -m
Long name: --integration_method
Value type: string
Default value: rk4
Global variable: method
Print name:
Description: Integration method
Long description:
There are a variety of integration methods available, including:

Forward Euler: forward
Leapfrog: leapfrog
2nd-order Runge Kutta: rk2
4th-order Runge Kutta: rk4

Short name: -d
Long name: --step_size
Value type: float
Default value: 0.001
Global variable: dt
Description: Integration time step
Long description:
In this code, the integration time step is held constant,
and shared among all particles in the N-body system.

Short name: -e
Long name: --diagnostics_interval
Value type: float
Default value: 1
Global variable: dt_dia
Description: Diagnostics output interval
Long description:
The time interval between successive diagnostics output.
The diagnostics include the kinetic and potential energy,
and the absolute and relative drift of total energy, since
the beginning of the integration.

These diagnostics appear on the standard error stream.
For more diagnostics, try option "-x" or "--extra_diagnostics".

1.1. CODE LISTING 9

Short name: -o
Long name: --output_interval
Value type: float
Default value: 1
Global variable: dt_out
Description: Snapshot output interval
Long description:
The time interval between output of a complete snapshot
A snapshot of an N-body system contains the values of the
mass, position, and velocity for each of the N particles.

This information appears on the standard output stream,
currently in the following simple format (only numbers):

N: number of particles
time: time
mass: mass of particle
position: x y z : vector components of position of particle
velocity: vx vy vz : vector components of velocity of particle
mass: mass of particle
...: ...

Example:

2
0
0.5
7.3406783488452532e-02 2.1167291484119417e+00 -1.4097856092768946e+00
3.1815484836541341e-02 2.7360312082526089e-01 2.4960049959942499e-02
0.5

-7.3406783488452421e-02 -2.1167291484119413e+00 1.4097856092768946e+00
-3.1815484836541369e-02 -2.7360312082526095e-01 -2.4960049959942499e-02

Short name: -t
Long name: --total_duration
Value type: float
Default value: 10
Global variable: dt_end
Description: Duration of the integration
Long description:
This option allows specification of the time interval, after which
integration will be halted.

10 CHAPTER 1. THE NEW NBODY DRIVER

Short name: -s
Long name: --softening_length
Value type: float
Default value: 0
Global variable: eps
Description: Softening length
Long description:
This option sets the softening length used to calculate the force
between two particles. The calculation scheme comforms to standard
Plummer softening, where rs2=r**2+eps**2 is used in place of r**2.

Short name: -i
Long name: --init_out
Value type: bool
Global variable: init_out
Description: Output the initial snapshot
Long description:
If this flag is set to true, the initial snapshot will be output
on the standard output channel, before integration is started.

Short name: -x
Long name: --extra_diagnostics
Value type: bool
Global variable: x_flag
Description: Extra diagnostics
Long description:
The following extra diagnostics will be printed:

acceleration (for all integrators)
jerk (for the Hermite integrator)

END

parse_command_line(options_definition_string)

include Math

nb = Nbody.new
nb.simple_read
nb.evolve($method, $eps, $dt, $dt_dia, $dt_out, $dt_end, $init_out, $x_flag)

1.2. TESTING 11

1.2 Testing

Alice: Let’s try to get some simple help:

|gravity> ruby rkn2.rb -h
The simplest ACS N-body code
-m --integration_method: Integration method [default: rk4]
-d --step_size: Integration time step [default: 0.001]
-e --diagnostics_interval: Diagnostics output interval [default: 1]
-o --output_interval: Snapshot output interval [default: 1]
-t --total_duration: Duration of the integration [default: 10]
-s --softening_length: Softening length [default: 0]
-i --init_out: Output the initial snapshot
-x --extra_diagnostics: Extra diagnostics

Bob: As it should be. Why don’t you try some of the long options?

Alice: I’ll ask it about step size, since we’ve talked about that so much, and,
let’s see, how about a boolean variable? That one should not show any default
values:

|gravity> ruby rkn2.rb --help --step_size -x
-d --step_size: Integration time step [default: 0.001]

In this code, the integration time step is held constant,
and shared among all particles in the N-body system.

-x --extra_diagnostics: Extra diagnostics

The following extra diagnostics will be printed:

acceleration (for all integrators)
jerk (for the Hermite integrator)

Bob: Indeed, only the time step size gives a default value. Let’s try some wrong
options, to see whether we get helpful error messages:

|gravity> ruby rkn2.rb -q
../command_line/clop.rb:143:in ‘parse_command_line_options’: (RuntimeError)
option "-q" not recognized; try "-h" or "--help"

from ../command_line/clop.rb:115:in ‘initialize’
from ../command_line/clop.rb:267:in ‘new’
from ../command_line/clop.rb:267:in ‘parse_command_line’
from rkn2.rb:144

12 CHAPTER 1. THE NEW NBODY DRIVER

Alice: That’s pretty clear. How about leaving out a value:

|gravity> ruby rkn2.rb -d
../command_line/clop.rb:174:in ‘parse_option’: (RuntimeError)
option "-d" requires a value, but no value given;
option description: Integration time step

from ../command_line/clop.rb:141:in ‘parse_command_line_options’
from ../command_line/clop.rb:115:in ‘initialize’
from ../command_line/clop.rb:267:in ‘new’
from ../command_line/clop.rb:267:in ‘parse_command_line’
from rkn2.rb:144

Bob: Clear too. It seems that we have a working product!

1.3 Checking

Alice: Let’s make a final check to see whether we get we still get our expected
output for the figure three orbit. The first implementation you made gave:

|gravity> ruby rkn1.rb -o 2.1088 -e 2.1088 -t 2.1088 < figure8.in
eps = 0
dt = 0.001
dt_dia = 2.1088
dt_out = 2.1088
dt_end = 2.1088
init_out = false
x_flag = false
method = rk4
at time t = 0, after 0 steps :
E_kin = 1.21 , E_pot = -2.5 , E_tot = -1.29

E_tot - E_init = 0
(E_tot - E_init) / E_init = -0

at time t = 2.109, after 2109 steps :
E_kin = 1.21 , E_pot = -2.5 , E_tot = -1.29

E_tot - E_init = -2e-15
(E_tot - E_init) / E_init = 1.55e-15

3
2.1089999999998787e+00
1.0000000000000000e+00
-1.6047303546488470e-04 -1.9320664965417420e-04
-9.3227640249930266e-01 -8.6473492670753516e-01

1.3. CHECKING 13

1.0000000000000000e+00
9.7020367429337440e-01 -2.4296620300772800e-01
4.6595057278750124e-01 4.3244644507801255e-01
1.0000000000000000e+00
-9.7004320125790211e-01 2.4315940965738195e-01
4.6632582971180025e-01 4.3228848162952316e-01

Let us now check the newer version, with our implementation using the clop.rb
code:

|gravity> ruby rkn2.rb -o 2.1088 -e 2.1088 -t 2.1088 < figure8.in
The simplest ACS N-body code
Integration method: rk4
Integration time step: dt = 0.001
Diagnostics output interval: dt_dia = 2.1088
Snapshot output interval: dt_out = 2.1088
Duration of the integration: dt_end = 2.1088
Softening length: eps = 0.0
at time t = 0, after 0 steps :
E_kin = 1.21 , E_pot = -2.5 , E_tot = -1.29

E_tot - E_init = 0
(E_tot - E_init) / E_init = -0

at time t = 2.109, after 2109 steps :
E_kin = 1.21 , E_pot = -2.5 , E_tot = -1.29

E_tot - E_init = -2e-15
(E_tot - E_init) / E_init = 1.55e-15

3
2.1089999999998787e+00
1.0000000000000000e+00
-1.6047303546488470e-04 -1.9320664965417420e-04
-9.3227640249930266e-01 -8.6473492670753516e-01
1.0000000000000000e+00
9.7020367429337440e-01 -2.4296620300772800e-01
4.6595057278750124e-01 4.3244644507801255e-01
1.0000000000000000e+00
-9.7004320125790211e-01 2.4315940965738195e-01
4.6632582971180025e-01 4.3228848162952316e-01

Good, all is well.

14 CHAPTER 1. THE NEW NBODY DRIVER

Chapter 2

XXX

2.1 xxx

first introduce the series rkn1.rb through rkn4.rb, the first two of which were
already introduced in the previous volume, and all of which still depend on
clop.rb as introduced in the previous volume.

Note that the change from Nbody to NBody is described in the text that is
temporarily parked in the next chapter

Then start improving the clop.rb function.

Finally move from rkn4.rb to nbody cst0.rb.

Note that nbody cst0.rb still uses global variables; and so does nbody cst1.rb
in later volumes. This is finally changed when nbody sh1.rb appears.

15

16 CHAPTER 2. XXX

Chapter 3

XXX

3.1 xxx

3.2 No Retrofitting

Bob: Oh, by the way, I decided to make a slight change in notation. So far,
we have called our N-body class Nbody. However, it seems that in the Ruby
community people have developed a clear convention to name all classes using
the socalled MixedCase notation: each word is capitalized. Since in our case N
and body are really different words, it would be much more consisten to call our
N-body class NBody.

Alice: That’s a really good idea. It is important to stick to the conventions
that are used in a community. That will make it easier for others to read our
code, and to jump right in, making their own additions. I guess this means that
you will go back and change Nbody into NBody everywhere in the volumes that
we’ve already written?

Bob: That would be a lot of work. Besides, it might confuse students and
colleagues who have already downloaded some of our earlier volumes, if we were
to suddenly change our notation, retroactively.

Alice: Again, you have a good point. Retrofitting what we have done, in order
to make the past consistent with the present, is a dubious idea, I agree. Do you
think it would be better not to do that, in general?

Bob: I think so. And since you like rules and abstractions, how about making
this into a rule of ours: thou shalt not retrofit. Or in plain English: we will
consider our work up till now read-only. We can add to it, but we will resist
the temptation to clean it all up.

Alice: Perhaps in the future, if and when we make everything available as a

17

18 CHAPTER 3. XXX

book series, we could make a cleaning-up pass through the whole collection.
But until that point, yes, I agree, let’s just accumulate, rather than correct.

Bob: Of course, if we find plain mistakes, we should correct them, but other
than that, we’ll simply freeze each volume after we finish it.

Alice: The more I think about it, the more I realize that is the only way to
go. After all, when we have N previous volumes, the probability that we find
some sort of minor inconsistency is at least proportional to N . And if you
take into account the way that inconsistencies may influence each other, you
get something like compound interest, which was the way that the exponential
function was first discovered! In the light of that, I guess the probability to be
still consistent after N volumes must be something like 1− exp(−cN) for some
constant c.

Even without taking into account compound effects, of changes triggering other
changes, if one new volume gives rise to one incompatibility with each previous
volume, we have N incompatibility, which should then be repaired in each of
the N previous volumes, giving rise to an amount of work of order N2. For
N new volumes, the work will scale as N3. And that is using only the most
optimistic assumption! Okay, I’m convinced.

Bob: Good! That will save us a lot of work.

3.3 xxx

nil nil nil nil nil nil nil

Chapter 4

Literature References

[to be provided]

19

