The Art of Computational Science

The Maya Open Lab

School Series

Volume 1

Moving Stars Around

Piet Hut and Jun Makino

September 14, 2007

Contents

Preface

0.1 Acknowledgments oL
The Universe in a Computer

1.1 Gravity oo
1.2 Galactic Suburbia oo o
1.3 Globular Clusters
14 GalacticNuclei. Lo
1.5 Star Forming Regions
1.6 Open Clusters
1.7 Writing your own star cluster simulator

The Gravitational N-Body Problem

2.1 Backgroundo
22 OurSetting. e
23 Funand Profit o
2.4 What is the Problem, and why N and Bodies?
The Gravitational 2-Body Problem

3.1 Absolute Coordinates
3.2 Coordinate Systems
3.3 AFourthPoint.
34 Centerof Mass
3.5 Relative Coordinates

11
12

13
13
14
15
17
18
20
22

25
25
26
27
28

4 CONTENTS
4 A Gravitational 1-Body Problem 43
4.1 Coordinates 43
4.2 Equivalent coordinates 45
4.3 Closing the Circle 47
4.4 Newton’s Equations of Motion 48
4.5 An Equivalent 1-Body Problem 51
46 Wrapping Up. o . o e 52
5 Writing the Code 55
5.1 Choosing a Computer Language 55
5.2 Choosing an Algorithm 56
5.3 Specifying Initial Conditions 58
54 Loopingin Ruby oL, 60
5.5 Interactive Ruby: irb 62
5.6 Compiled vs. Interpreted vs. Interactive 63
5.7 Ome StepataTime 64
5.8 Printing the Result 66
6 Running the Code 69
6.1 A Surprise 69
6.2 Too Much, Too Soon 71
6.3 A Circular Orbit 72
6.4 Radial Acceleration L. 73
6.5 Virial Theorem L oL 75
6.6 Circular Motion oL 7
6.7 OneStepataTime 78
7 Debugging the Code 81
7.1 One Integration Step: Verification 81
7.2 A Different Surpriseo 83
7.3 One Integration Step: Validation 85
7.4 More Integration Steps oo 86
7.5 Even More Integration Steps 89

CONTENTS
7.6 Printing Plotso o oo

8 Convergence for a Circular Orbit
8.1 Better Numbers L.
8.2 Even Better Numbers
8.3 An Even Better Orbit
8.4 Reasons for Failure

85 Signsof Hope

9 Convergence for an Elliptic Orbit
9.1 Adding a Counter
9.2 Sparse Output
9.3 Better and Better
9.4 A Print Method
9.5 From One Body to Two Bodies

10 The Modified Euler Algorithm
101 AWildIdea
10.2 Backward and Forward
10.3 Omn Shaky Ground
10.4 Specifying the Stepso L.
10.5 Implementation oo
10.6 Experimentation Lo
10.7 Simplification
10.8 Second Order Scaling,

11 Arrays
11.1 The DRY Principle
11.2 Vector Notation
11.3 Arrays o e
11.4 Declaration
115 Classes v v v i i

12 Array Methods

91

93
93
94
95
97
99

101
101
103
105
107
110

115
115
116
117
119
121
122
123
124

127
127
128
129
131
132

135

6 CONTENTS
12.1 An Array Declaration 135
12.2 Three Array Methods 136
12.3 The Methods each and each_index 137
124 Themap Method 139
12.5 Defining a Method 140
12.6 The Array#inject Method 141
12.7 Shorter and Shorter 143
12.8 Enough Lo 144

13 Overloading the + Operator 147
13.1 A DRY Version of Modified Euler 147
13.2 Not quite DRY yet 148
13.3 Array Addition 149
13.4 Who is Adding What 151
13.5 The plus Method 152
13.6 The + Method 153
13.7 A Small Matter: the Role of the Period 154
13.8 Testing the + Method 155
13.9 AVector Class i 157

14 A Vector Class with + and - 161
14.1 Vector Subtraction 161
142 Unary +. 0. e 163
143 Unary —. . . . o oo 0 e e 164
14.4 An Unexpected Result 165
14.5 Converting e 167
14.6 Augmenting the Array Class 168
14.7 FixingtheBug Lo oo 170

15 A Complete Vector Class 173
15.1 Vector Multiplication 173
15.2 An Unnatural Asymmetry 174
15.3 Vector Division 0. 175

CONTENTS 7

15.4 The Score: SixtoOne 176
155 A Solution 177
15.6 Augmenting the Fixnum Class 178
15.7 Augmenting the Float Class 180
15.8 Vector Class Listing 181
15.9 Forward Euler in Vector Form 182
16 A Matter of Speed 185
16.1 Slowdown by a Factor Two 185
16.2 A C Version of Forward Euler 186
16.3 A Simple Ruby Version 188
16.4 A Ruby Array Version. 189
16.5 A Ruby Vector Version 190
16.6 More Timing Precision 190
16.7 Conclusion o 191
17 Modified Euler in Vector Form 193
17.1 An Easy Translation. 193
17.2 Variable Names 195
17.3 Consistency 196
17.4 A Method Returning Multiple Values 198
17.5 Simplification L o 199
18 Leapfrog 203
18.1 Interleaving Positions and Velocities 203
18.2 Time Symmetry 205
18.3 A Vector Implementation 207
18.4 Saving Some Work oL oo 209
18.5 The DRY Principle Once Again 211
19 Time Reversibility 213
19.1 Long Time Behavior 213
19.2 Discussing Time Symmetry L. 214

19.3 Testing Time Symmetry 217

19.4
19.5

Two Ways to Go Backward
Testing a Lack of Time Symmetry

20 Energy Conservation

20.1
20.2
20.3
204
20.5
20.6
20.7

Kinetic and Potential Energy
Relative Coordinates
Specific Energies
Diagnostics oo
Checking Energy
Error Growth

Pericenter Troubles

21 Scaling of Energy Errors

21.1
21.2
21.3
214
21.5
21.6

A Matter of Time
A New Control Structure
Overshooting
Knowing When To Stop
Linear Scaling

Picture Time

22 Error Scaling for 2nd-Order Schemes

22.1
22.2
22.3
224
22.5

23 Error Behavior for 2nd-Order Schemes

23.1
23.2
23.3
234
23.5
23.6

Modified Euler
Energy Error Scaling
Leapfrog
Another Error Scaling Exercise

Roundoff Kicks In

Modified Euler: Energy Error Peaks

Almost Too Good
Leapfrog: Peaks on Top of a Flat Valley
Time Symmetry
Surprisingly High Accuracy
Squaring Off

CONTENTS

CONTENTS 9

24 Literature References 267

10

CONTENTS

Preface

We present an introduction to setting up, running and analyzing simulations of
stellar system. This description is self-contained: a high-school student should
be able to start at page 1, and work her way through the series. We believe that
the current book is unique, in providing all the details needed, when starting
from scratch.

In many areas of science, computer simulations of complex physical systems
cannot be performed with off-the-shelf software packages. Instead, computa-
tional scientists have to design and build their own software environment, just
as experimental scientists have to design and build their own laboratories, be-
fore being able to use them. For a long time, however, the know-how needed to
construct computational laboratories has remained only a form of tacit knowl-
edge.

Unlike explicit knowledge that can be found in manuals, this type of implicit
knowledge has been alive in conversations among experts, and has been passed
down in that way only as a form of oral tradition. This kind of knowledge has
not been written down anywhere in sufficient detail to allow it to be passed
down without direct personal instructions, or indirect osmosis through personal
participation in a joint project.

The problem with the hundreds of introductory text books to science is that they
mostly provide summaries, highly distilled collections of knowledge that can only
be internalized through a process of hands-on experience that is generally left
out. We think there is room for a different approach, one that has not been
attempted earlier, as far as we know. We will try to follow a few individual
students, getting occasional guidance from a teacher, in the actual process of
learning through trial and error. This choice dictates the format as that of a
dialogue, in which we can overhear what goes wrong, and how the students
sooner or later find out how to correct their errors and misunderstandings.

This book aims at three groups of readers. For scientists, it gives a concrete
example for the first steps in setting up a scientific simulation software envi-
ronment. Whether you are a biologist, physicist, psychologist, or working in
another area of science, many of the issues discussed here will come up for you
too, when you want to build a new software system, or what is often more

11

12 CONTENTS

challenging, when you want to fully overhaul and modernize an archaic existing
system. Because our scientific example has such a simple base, nothing more
than Newton’s laws of gravity, it is easy to grasp the underlying physics, after
which you can focus on the complexity of developing and managing a software
laboratory.

The second target group of readers are computer scientists, and in general ev-
eryone building complex software systems. While we apply modern concepts
such as the use of object-oriented languages and design patterns, and notions
such as extreme programming, our main forte is that we fill a gap in the market,
by providing a complete discussion of the process of constructing a large-scale
software system.

Readers in our third group neither work in natural science nor in computer
science. They are simply curious how a modern software system is set up.
For example, they may have read about the billions of dollars that are lost
because of late delivery of software, or worse, delivery of faulty software. Newly
built airports have experienced very costly delays because software for baggage
transport was delivered way too late. Perfectly functioning rockets have been
blown up because of glitches in complex software systems (see the stories about
the loss of the Mars Climate Orbiter' and an Ariane 5 rocket®). Perhaps you
are an average user of the internet, and just curious about what makes writing
large software environments so hard. Perhaps you are working in business or
finance, and you are wondering whether to invest in a software company. How
are you going to judge the soundness of the company’s approach? Having a
good look in the kitchen will help, to see how software is actually designed and
written. But actually serving as an apprentice in the kitchen would be even
better. That is exactly what this book offers.

0.1 Acknowledgments

We thank Hans-Peter Bischof, Stan Blank and his high school students, Steve
Giess and Peter Teuben for their comments on the manuscript.

Piet Hut and Jun Makino

lhttp://mars. jpl.nasa.gov/msp98/orbiter
2http://www.ima.umn.edu/~arnold/disasters/ariane.html

Chapter 1

The Universe in a
Computer

1.1 Gravity

Gravity is the weakest of all fundamental forces in physics, far weaker than
electromagnetism or the so-called weak and strong interactions between sub-
atomic particles. However, the other three forces lose out in the competition
with gravity over long distances. The weak and strong interactions both have an
intrinsically short range. Electromagnetism, while being long-range like grav-
ity, suffers from a cancellation of attraction and repulsion in bulk matter, since
there tend to be as almost exactly as many positive as negative charges in any
sizable piece of matter. In contrast, gravitational interactions between particles
are always attractive. Therefore, the more massive a piece of matter is, the
more gravitational force it exerts on its surroundings.

This dominance of gravity at long distances simplifies the job of modeling a
chunk of the Universe. To a first approximation, it is often a good idea to
neglect the other forces, and to model the objects as if they were interacting
only through gravity. In many cases, we can also neglect the intrinsic dimensions
of the objects, treating each object as a point in space with a given mass. All
this greatly simplifies the mathematical treatment of a system, by leaving out
most of the physics and chemistry that would be needed in a more accurate
treatment.

The objects we will be studying are stars, and the environment we will focus
on are dense stellar systems, star clusters where the stars are so close together
that they will occasionally collide and in general have frequent interesting and
complex interactions. Some of the stars can take on rather extremely dense
forms, like white dwarfs and neutron stars, and some stars may even collapse to

13

14 CHAPTER 1. THE UNIVERSE IN A COMPUTER

form black holes. However, in first approximation we can treat all these different
types of objects as point particles, as far as their gravitational interactions are
concerned.

We lay the groundwork for modeling a system of stars. We start absolutely from
scratch, with a most simple code of less than a page long. In many small steps
we then improve that code, pointing out the many pitfalls along the way, on
the level of programming as well as astrophysical understanding. We introduce
helpful code development facilities and visualization tools and give many hints
as to how to balance simplicity, efficiency, clarity, and modularity of the code.
Our intention is to introduce the topic from square one, and then to work our
way up to a robust set of codes with which one can do actual research. In later
volumes in this series, we will continue to develop these codes, adding many
useful diagnostic tools, and integrating those in a full production-level software
environment.

1.2 Galactic Suburbia

Within the visible part of the universe, there are some hundred billion galaxies.
Our galaxy is a rather typical spiral galaxy, one of those many billions, and
within our galaxy, our sun is a star like any other among the hundred billion or
so stars in our galaxy.

The sun is unremarkable in its properties. Its mass is in the mid range of what is
normal for stars: there are others more than ten times more massive, and there
are also stars more ten times less massive, but the vast majority of stars have a
mass within a factor ten of that of the sun. Our home star is also unremarkable
in its location, at a distance of some thirty thousand light years from the center
of the galaxy. Again, the number of stars closer to the center and further away
from the center are comparable. Our closest neighbor, Proxima Centauri, lies
at a distance of a bit more than four light years.

This distance is typical for separations between stars in our neck of the woods.
A light year is ten million times larger than the diameter of the sun (a million
km, or three light seconds). In a scale model, if we would represent each star
as a cherry, an inch across, the separation between the stars would be many
hundreds of miles. It is clear from these numbers that collisions between stars
in the solar neighborhood must be very rare. Although the stars follow random
orbits without any traffic control, they present such tiny targets that we have to
wait very long indeed in order to witness two of them crashing into each other.
A quick estimate tells us that the sun has a chance of hitting another star of
less than 1076 per year. In other words, we would have to wait at least 10'°
years to have an appreciable chance to witness such a collision. Given that the
sun’s age is less than five Gigayears, 5.10° years, it is no surprise that it does not
show any signs of a past collision: the chance that that would have happened
was less than one in a million. Life in our galactic suburbs is really quite safe

1.3. GLOBULAR CLUSTERS 15

for a star.

There are other places in our galaxy that are far more crowded, and consequently
are a lot more dangerous to venture into. We will have a brief look at four
types of crowded neighborhoods: globular clusters, galactic nuclei, star forming
regions, and open clusters.

1.3 Globular Clusters

In Fig. 1.1 we see a picture of the globular cluster M15, taken with the Hubble
Space Telescope. This cluster contains roughly a million stars. In the central
region typical distances between neighboring stars are only a few hundredths
of a light year, more than a hundred times smaller than those in the solar
neighborhood. This implies a stellar density that is more than a million times
larger than that near the sun. Since the typical relative velocities of stars in
M15 are comparable to that of the sun and its neighbors, a few tens of km/sec,
collision times scale with the density, leading to a central time between collisions
of around 10'° years. With globular clusters having an age of roughly 10'°
years, a typical star near the center has a significant chance to have undergone
a collision in the past. To be a bit more precise, we don’t know how long a
typical star in the core has remained in its current environment, but even if
such a star has been there only for a billion years, the chance of a collision has
already been ~ 10%.

In fact, the chances are even higher than this rough estimate indicates. One
reason is the stars spend some part of their life time in a much more extended
state. A star like the sun increases its diameter by more than a factor of one
hundred toward the end of its life, when they become a red giant. By presenting
a much larger target to other stars, they increase their chance for a collision
during this stage (even though this increase is partly offset by the fact that the
red giant stage lasts shorter than the so-called main-sequence life time of a star,
during which they have a normal appearance and diameter). The other reason is
that many stars are part of a double star system, a type of dynamic spider web
that can catch a third star, or another double star, into a temporarily bound
three- or four-body system. Once engaged in such a tightly bound dance, the
chance for collisions between the stars is greatly increased.

A detailed analysis of all these factors predicts that a significant fraction of
stars in the core of a dense globular cluster such as M15 has already undergone
at least one collision in its life time. This analysis, however, is quiet complex.
To study all of the important channels through which collisions may occur, we
have to analyze encounters between a great variety of single and double stars,
and occasional bound triples and larger bound multiples of stars. Since each
star in a bound subsystem can be a normal main-sequence star, a red giant, a
white dwarf, a neutron star or even a black hole, as well as an exotic collision
product itself, the combinatorial richness of flavors of double stars and triples

16 CHAPTER 1. THE UNIVERSE IN A COMPUTER

MNASA and The Hubble Heritage Team (STScl/AURA) + Hubble Space Telescope WFPC2 » STScl-PRC00-25

Figure 1.1: A snapshot of the globular cluster M15, taken with the Hubble Space
Telescope' .

Thttp://oposite.stsci.edu/pubinfo/PR/2000/25/content/0025y. jpg

1.4. GALACTIC NUCLEI 17

Figure 1.2: An image of the central region of our galaxy, as seen with the
Keck telescope’. The massive black hole is located near the head of the arrow
labeled SgrA*. The size of this image is two light years by two light years, and
the crowding is enormous: in the neighborhood of the sun, typical distances
between stars are several light years, and a snapshot like this most likely would
show just one star or none at all.

Thttp://www.astro.ucla.edu/~jlu/gc/pictures/lgs.shtml

is enormous. If we want to pick a particular double star, we not only have to
choose a star type for each of its members, but in addition we have to specify
the mass of each star, and the parameters of its orbit, such as the semi-major
axis (a measure for the typical separation of the two stars) as well as the orbital
eccentricity.

1.4 Galactic Nuclei

In Fig. 1.2 we see an image of the very center of our galaxy. This picture has
been obtained with the Keck telescope, in a near infrared wavelength band.

In the very center of our galaxy, a black hole resides with a mass a few million
times larger than the mass of our sun. Although the black hole itself is invis-

18 CHAPTER 1. THE UNIVERSE IN A COMPUTER

ible, we can infer its presence by its strong gravitational field, which in turn
is reflected in the speed with which stars pass near the black hole. In normal
visible light it is impossible to get a glimpse of the galactic center, because of
the obscuring gas clouds that are positioned between us and the center. Infrared
light, however, can penetrate deeper in dusty regions.

In the central few light years near the black hole, the total mass of stars is
comparable to the mass of the hole. This region is called the galactic nucleus.
Here the stellar density is at least as large as that in the center of the densest
globular clusters. However, due to the strong attraction of the black hole, the
stars zip around at much higher velocities. Whereas a typical star in the core of
M15 has a speed of a few tens of km/sec, stars near the black hole in the center of
our galaxy move with speeds exceeding a 1000 km/sec. However, gravitational
focusing is less by the same factor, and as a consequence, the frequency of stellar
collisions is comparable.

Modeling the detailed behavior of stars in this region remains a great challenge,
partly because of the complicated environmental features. A globular cluster
forms a theorist’s dream of a laboratory, with its absence of gas and dust and star
forming regions. All we find there are stars that can be modeled well as point
particles unless they come close and collide, after which we can apply the point
particle approximation once again. In contrast, there are giant molecular clouds
containing enormous amounts of gas and dust right close up to the galactic
center. In these clouds, new stars are formed, some of which will soon afterwards
end their life in brilliant supernova explosions, while spewing much of their
debris back into the interstellar medium. Such complications are not present in
globular clusters, where supernovae no longer occur since the member stars are
too old and small to become a supernova.

Most other galaxies also harbor a massive black hole in their nuclei. Some of
those have a mass of hundreds of millions of solar masses, or in extreme cases
even more than a billion times the mass of the sun. The holy grail of the study
of dense stellar systems is to perform and analyze accurate simulations of the
complex ecology of stars and gas in the environment of such enormous holes in
space. Much of the research on globular clusters can be seen as providing the
initial steps toward a detailed modeling of galactic nuclei.

1.5 Star Forming Regions

There are many other places in the galactic disk where the density of stars is
high enough to make collisions likely, at least temporarily. These are the sites
where stars are born. Fig. 1.3 taken by the Japanese Subaru telescope in Hawaii
shows the Orion Nebula, also known as M42, at a distance of 1500 light years
from the sun. This picture, too, is taking in infrared light in order to penetrate
the dusty regions surrounding the young stars. These stars all recently formed
from the gas and dust that still surrounds them.

1.5. STAR FORMING REGIONS

Orion Nebula
Tizl s, Matics

Figure 1.3: The Orion Nebula, as seen by the Subaru telescope!.

Thttp://wuw.naoj.org/Science/press_release/1999/01/0rion_300. jpg

19

20 CHAPTER 1. THE UNIVERSE IN A COMPUTER

In order to study collisions in these star forming regions, we can no longer treat
the stars are point masses. Many of the collisions take place while the stars are
still in the process of forming, before they settle into their normal equilibrium
state. While a protostar is still in the process of contracting from the gas cloud
in which it was born, it presents a larger target for collisions with other stars.
In addition, a single contracting gas cloud may fission, giving rise to more than
one star at the same time. In this way, the correlated appearance of protostars
is even more likely to lead to subsequent collisions.

The proper way to model these processes is to combine gas dynamics and stellar
dynamics. Much progress has been made recently in this area. One way to use
stellar dynamics in an approximate fashion is to begin with the output of the
gas dynamics codes, which present the positions and velocities of a group of
newly formed stars, and then to follow and analyze the motions of those stars,
including their collisions.

1.6 Open Clusters

Although stars are formed in groups, these groups typically do not stay together
for very long. Perturbations from other stars and gas clouds in their vicinity are
often enough to break up the fragile gravitational hold they initially have over
each other. Some of the more massive groups of newly formed stars, however,
are tightly bound, enough to survive their environmental harassment. They
form the so-called open clusters, where their name indicates that they have
central densities that are typically less than what we see in globular clusters.

Fig. 1.4 shows one of the richest and densest open clusters, M67, as observed
by the Anglo-Australian Observatory. Since this cluster is old enough to have
lost its gas and dust, all stars are visible at normal optical wavelengths, at
which this image is taken. In the central regions of this cluster, there are
indications that some of the stars have undergone close encounters or even
collisions. In particular, some of the so-called blue stragglers may be merger
products. Consequently, this star cluster qualifies as a dense stellar system.

Open clusters typically have fewer members than globular clusters. Also, they
are younger. Both facts makes it easier to simulate open clusters than glob-
ular clusters. On the other hand, the densest globular clusters show a higher
frequency and a far richer variety of stellar collisions, making them a more inter-
esting laboratory. In that sense, a dynamical simulation of an open cluster can
be seen as providing preparatory steps toward the modeling of globular clusters,
just as a study of the latter forms a stepping stone toward the investigation of
galactic nuclei.

1.6. OPEN CLUSTERS 21

QA nglo-Au strallia.n' Obs ervatory .

Figure 1.4: The open star cluster M67, in a picture taken at the Anglo-Australian
Observatory'.

Thttp://www.seds.org/messier/Pics/More/m67aat . jpg

22 CHAPTER 1. THE UNIVERSE IN A COMPUTER

1.7 Writing your own star cluster simulator

Astronomers have half a century of experience in writing computer codes to
simulate dense stellar systems. The first published results date back to 1960,
and it was in the subsequent decade that it became clear just how tricky it was
to simulate a group of interacting stars. The task seems so easy: for each star,
just solve Newton’s equations of motion (an object’s acceleration is given by
the applied force divided by the mass of the object) under the influence of the
gravitational pairwise interactions of all other stars. Indeed, it is straightforward
to write a simple code to do so, which integrates a rather simple differential
equation, as we will see below. And as long as all stars remain fairly well
separated from each other, even a simple code will do a reasonably good job.
For historical reasons, this type of code is called an N-body code.

In practice, though, even a small group of stars will spontaneously form one or
more double stars. This was discovered experimentally in the early sixties. One
way to understand this result, after the fact, is from an energetic point of view.
When a double star, or binary as they are generally called, is formed, energy has
to be released. The reason is that the two stars in a binary are bound, which
means that the total energy is negative, whereas two stars meeting each other
after coming in from far away have a positive net energy. When three stars come
together randomly, there is a chance that two of the three are left in a bound
state, while the third one escapes, carrying the excess energy. Left by itself, a
stellar system will exploit this energy liberation mechanism by spontaneously
forming binaries.

As soon as even one binary appears, a simple code with constant time steps will
give unacceptably large errors. The first modification needed is the introduction
of an adaptive time step. In the simplest case, all particles will still share the
same time step size, but that size will change in time, in order to adequately
resolve the closest encounters between particles. However, even a single binary
can then impose a tiny time step on the whole system, slowing everybody down.

By the end of the sixties, this problem was overcome by the development of
codes that employed individual time steps. Stars with close neighbors were
stepped forward in time more frequently than stars at large, and in this way the
computational power was brought to where it was most needed.

This modification in itself brought gravitational N-body codes already well out-
side the range of systems that are normally discussed in text books on numerical
integration methods. The internal book keeping needed to write a correct and
efficient code with individual time steps is surprisingly large, given the simplic-
ity of the task: integrate the effect of pairwise attractive inverse square forces, in
order to solve the differential equations that constitute the equations of motion
of classical Newtonian gravity.

However, introducing individual time steps was only a first step toward the
development of modern N-body codes. The presence of tight binaries produced

1.7. WRITING YOUR OWN STAR CLUSTER SIMULATOR 23

much more of an obstacle, and throughout the seventies a variety of clever
mechanisms were developed in order to deal with them efficiently.

For one thing, there are problems with round-off. Two stars in a tight orbit
around each other have almost the same position vector, as seen from the cen-
ter of a star cluster, where we normally anchor the global coordinate system.
And yet it is the separation between the stars that determines their mutual
forces. When we compute the separation by subtracting two almost identical
spatial vectors, we are asking for (numerical) trouble. The solution is to in-
troduce a local coordinate system whenever two or more stars undergo a close
interaction. This does away with the round-off problem, but it introduces a host
of administrative complexities, in order to make sure that any arbitrary config-
uration of stars is locally presented correctly — and that the right thing happens
when two or more of such local coordinate patches encounter each other. This
may not happen often, but one occurrence in a long run is enough to cause an
unacceptably large error if no precautions have been taken to deal properly with
such a situation.

We can continue the list of tricks that have been invented to allow every larger
and denser systems to be modeled correctly. We will encounter them later on,
and explain them then in detail, but just to list a few, here are some of the
techniques. Numerical problems with the singularity in the two-body system
have been overcome by mapping two or more interacting stars from the three-
dimensional Kepler problem to a four-dimensional harmonic oscillator. The
total force on particles has been split into different contributions, the first from
a near zone of relatively close neighbors and the second from a far zone of all
other particles, with each partial force being governed with different integration
time steps. Tree codes have been used to group the contributions of a number of
more and more distant zones together in ever larger chunks, for efficiency. Triple
stars have received their own special treatment, especially the marginally stable
triples that are sometimes long-lived, but continuously changed their inner state
due to internal perturbations. The list goes on. See Sverre Aarseth’s book
Gravitational N-Body Simulations®

In this book, we will introduce a modern integrator, the Hermite scheme, devel-
oped in the 1990s, together with a variable time step integration scheme, where
all stars share a common time step at any given time. Our emphasis will be on a
complete explanation of all the steps involved, together with a discussion of the
motivation for those steps. In the last few chapters, we will embark on a research
project featuring stellar collisions, in a simple gravity-only approximation.

One of the roles of the current book is to provide an introduction to the Kali
code, and the other software tools that are part of the Maya open lab®>. The
Maya project will make it possible to simulate an entire star cluster.

Thttp://wuw.cambridge.org/catalogue/catalogue.asp?isbn=0521432723
2http://www.ArtCompSci.org

24

CHAPTER 1.

THE UNIVERSE IN A COMPUTER

Chapter 2

The Gravitational N-Body
Problem

2.1 Background

Our goal is build a laboratory to study the interactions between stars. Since
stars don’t fit in traditional laboratories, we have no choice but to use virtual
stars in virtual labs. The computer provides us with the right virtual environ-
ment, and it is our task to write the software that will correctly simulate the
behavior of the virtual stars and their interactions. Once that software is in
place, or at least enough of it to start playing, the user can provide a starting
situation, after which our software will evolve the system, perhaps for a few
billion years.

In this book we will focus in detail on the whole process of developing the
software needed. We will aim at realistic detail, showing the way of thinking that
underlies the construction of a complex and ever-growing software environment.
We will require a bit of patience, since it will take a while to have a full package
in hand for modeling, say, the long-term behavior of a star cluster, and we are
presenting in this book only the first few steps. This drawback, we feel, is more
than offset by the advantages of our approach:

e you will be fully empowered to customize any aspect of the software envi-
ronment or any larger or smaller part of it;

e you will be able to use the package with complete understanding and
appreciation of what are and are not reasonable ways to apply the tools;

e you will learn to embark on completely different large-scale software projects,
be they in (astro)physics or other areas of science;

25

26 CHAPTER 2. THE GRAVITATIONAL N-BODY PROBLEM

e and in addition, we hope that reading these books will be as much fun for
the reader as it was for us to write them.

2.2 Our Setting

We want to convey some of the atmosphere in which large software environ-
ments are grown, in a dynamic and evolutionary way, often starting from very
small beginnings — and always surprising the original authors when they see
in what unexpected ways others can and will modify their products in whole
new directions. Most of our narrative will follow this process step by step, but
occasionally we will turn away from the process to the players: the developers
writing the software. We have chosen one representative of each of the three
target groups mentioned in our preface, from natural science, business and com-
puter science.

The setting is an undergraduate lounge, where three friends occasionally hang
out after dinner, and sometimes tell each other about the projects they are
working on. Tonight, Erica talks with great animation to her friends Dan and
Carol. Erica is an astrophysics major, Dan is currently studying biology but
preparing to go to business school, and Carol majors in computer science.

Erica: Guess what! Today I was asked to choose a student project, for me to
work on for half a year. Many of the choices offered seemed to be interesting,
but for me the most exciting opportunity was to work on the overhaul of a
laboratory for interactions between stars.

Dan: What are the interactions that are so interesting?

Erica: Imagine this, the current software package allows you to create a star
cluster and to let it evolve for billions of years, and then you can fly through
the whole four-dimensional history in space and time to watch all the collisions
and close encounters between normal stars and black holes and white dwarfs
and you name it!

Carol: If that package already exists, what then is so exciting about an over-
haul?

Erica: Yes, the package exists, but every large software package tends to grow
and to become overweight. As you both know, this is true in business-driven
software projects, but it is even more true in science settings, where the value
of clean software engineering is underrated even more than in profit-oriented
areas. As a result, by far the most reasonable and efficient way to extend older
packages is first to do a thorough overhaul.

Dan: I see. You mean that rewriting a package is worth the time, presumably
because you have already figured out the physics and you have similarly built
up extensive experience with hooking everything together in various ways in
software.

2.3. FUN AND PROFIT 27

Erica: Exactly. Rewriting a package takes far less time than writing it in the
first place — if we want to keep the same functionality. In practice, it may
take longer than we think, since we will for sure find new extensions and more
powerful ways to include more physics. As long as we don’t get carried away,
and keep our science goals in sight, this extra time is well spent and will lead
to greater productivity.

Carol: I wonder, though, whether a complete overhaul is desirable. T have just
learned about a notion called refactoring. The idea is to continuously refine and
clean up code while you go along.

Erica: Yes, that would be better. In fact, I already had a brief chat with my
supervisor, a professor specializing in stellar dynamics, and he mentioned just
that. He said that this was the last really major overhaul he hoped to do for
his software environment. The main reason for the planned overhaul is to make
it flexible enough that the system from now on can grow more organically.

Dan: The overhaul that will be the end of all overhauls!

Carol: Well, maybe. I've heard a lot of hype about programming, in the few
years that I have been exposed to it. But the basic idea sounds good. And even
if you will have to overhaul in the future, a cleaner and more modular code will
surely be easier to understand and disentangle and hence to overhaul.

2.3 Fun and Profit

Dan: May I ask a critical question? You have half a year to get your feet wet,
doing a real piece of scientific research. Would it really be prudent to spend
that time overhauling someone else’s code?

Erica: I asked that question, too. My supervisor told me that a thorough-going
attempt to improve a large software environment in a fundamental way from the
bottom up is guaranteed to lead to new science. Instead of overhauling, a better
term might be brewing. You will reap the benefits of all the years of experience
that have gone into building the software, from working with the science to the
figuring out of the architecture of the software environment. Those who wrote
the original code have become too engrossed in teaching and administration.
But they will have time to share their experience, and they will gladly do so
when they see someone seriously working on improvements.

Carol: In other words, during this coming half year you might find yourself
engaging in actual research projects, as a form of spin-off of the overhauling, or
brewing as you just called it?

Erica: Exactly.

Dan: You know what? Perhaps this is a silly thing to suggest, but I suddenly
got an idea. It seems that Erica today has started what amounts to an infinite
task. She will have her hands full at it, even if she could clone herself into several

28 CHAPTER 2. THE GRAVITATIONAL N-BODY PROBLEM

people working simultaneously, and she is not expected to reach anywhere near
completion in half a year. At the same time, she is expected to start absolutely
from start. If she wouldn’t do so, it wouldn’t be a complete overhaul. Here is
my proposal: how about all three of us pitching in, a couple times a week, after
dinner, using the time we tend to spend here anyway?

Carol: To keep Erica honest?

Dan: Exactly! Of course, she may well get way ahead of us into all kinds of
arcane astrophysics applications, but even so, if we plod behind her, asking her
questions about each and every decision she has made from the start, we will
probably keep her more honest than any astrophysicist could — simply because
we know less about astrophysics than any astrophysicist! And besides, for me
too it would be a form of fun and profit. I intend to focus on the software
industry when I go to business school, and I might as well get some real sense of
what is brewing in the kitchen, when people write non-trivial software systems.

Carol: Hmm, you have a point. Obviously, something similar holds for me
too, in that I can hone my freshly learned theoretical knowledge on realistic
astrophysics problems. What do you think, Erica, are we rudely intruding upon
your new project?

Erica: No, on the contrary! As long as I keep my actual project separated, as
Dan stressed, I am more than happy to discuss the basics with you both during
after-dinner sessions, as long as you have the stamina and interest to play with
orbital dynamics of stars and star systems. And I’'m sure we will all three learn
from the experience: I would be very surprised if you didn’t inject new ideas I
hadn’t thought about, or notice old ideas of mine that can be improved.

Dan: We have a deal! Let’s get started right away, and get back here tomorrow,
same time, same place.

Carol: Okay, but let’s say almost the same place: next door is the computer
center, where we will be able to find a big enough screen so that the three of us
can gather around it, to start writing our first star-moving program.

Erica: An N-body code, that is what it is called. I'm game too. See you both
tomorrow!

2.4 What is the Problem, and why N and Bod-
ies?

The next day, our three friends have gathered again, ready to go.

Erica: Hi, you’re all back, so I guess you were really serious. Well, let’s write
our first code for solving the gravitational N-body problem.

Dan: I understand that we are dealing with something like gravitational at-
tractions between objects, but why is that a problem and not, say, a system?

2.4. WHAT IS THE PROBLEM, AND WHY N AND BODIES? 29

Carol: And why are you talking about N bodies, and not p bodies or anything
else?

Dan: And why bodies and not just objects?

Erica: Traditionally, in mathematics and mathematical physics, when we pose a
question, we call it a problem, as in a home work problem. And stars and planets
just happen to be called celestial bodies. Specifically, the gravitational 2-body
problem is defined as the question: given the initial positions and velocities of
two stars, together with their masses, describe their orbits.

Dan: What if the stars collide?

Erica: For simplicity, we treat the stars as if they are mass points, without any
size. In this case they will not collide, unless they happen to hit each other head-
on. Of course, we can set two point masses up such that they will hit each other,
and we will have to take such possibilities into account, at some point. However,
when the stars in a star cluster are born from a gas cloud, their motions will not
be fine tuned to lead to exactly head-on collisions with mathematical precision.
Therefore, the chance of a collision between point particles is negligible.

Carol: In mathematical terms: the set of initial conditions for collisions to
occur has measure zero in the space of all possible initial conditions. Don’t
worry, that’s just a formal way of saying the same thing. But I have a serious
question: real stars are not points, so why can we treat them as such?

Erica: The goal of building a laboratory for star cluster evolution is to introduce
real stars with finite sizes, nuclear reactions, loss of radiation and mass, and all
that good stuff. But we have to start somewhere, and a convenient starting
place is to treat stars as point masses, as a first approximation.

This brings me to Carol’s question: why do astrophysicists talk about N-body
simulations? This is simply a historical convention. I would prefer the term
many-body simulations, but somehow somewhere someone stuck in the variable
N as a place-holder for how many bodies where involved, and we seem to be
stuck with that notation.

30

CHAPTER 2.

THE GRAVITATIONAL N-BODY PROBLEM

Chapter 3

The Gravitational 2-Body
Problem

3.1 Absolute Coordinates

A decision was made to let Carol take the controls, for now. Taking the keyboard
in front of a large computer screen, she opens a new file nbody . rb in her favorite
editor. Expectantly, she looks at FErica, sitting to her left, for instructions, but
Dan first raises a hand.

Dan: I'm a big believer in keeping things simple. Why not start by coding
up the 2-body problem first, before indulging in more bodies? Also, I seem to
remember from an introductory physics class for poets that the 2-body problem
was solved, whatever that means.

Erica: Good point. Let’s do that. It is after all the simplest case that is
nontrivial: a 1-body problem would involve a single particle that is just sitting
there, or moving in a straight line with constant velocity, since there would be
no other particles to disturb its orbit.

And yes, the 2-body problem can be solved analytically. That means that you
can write a mathematical formula for the solution. For higher values of N,
whether 3 or 4 or more, no such closed formulas are known, and we have no
choice but to do numerical calculations in order to determine the orbits. For
N = 2, we have the luxury of being able to test the accuracy of our numerical
calculations by comparing our results with the formula that Newton discovered
for the 2-body problem.

Yet another reason to start with N = 2 is that the description can be simplified.
Instead of giving the absolute positions and velocities for each of the two par-
ticles, with respect to a given coordinate system, it is enough to deal with the
relative positions and velocities. In other words, we can transform the two-body

31

32 CHAPTER 3. THE GRAVITATIONAL 2-BODY PROBLEM

Figure 3.1: Two bodies with absolute coordinates ry,rs.

problem into a one-body problem, effectively.

Dan: A one-body problem? You mean that one body is fixed in space, and the
other moves around it?

Carol: I guess that Erica is talking about a situation where one body is much
more massive, so that it doesn’t seem to move much, while the other body
moves around it. When the Earth moves around the Sun, the Sun can almost
be considered to be fixed. Similarly, when you look at the motion of the Moon
around the Earth: the Earth has a much larger mass than the Moon, and the
mass of the Sun is again much larger than that of the Earth.

Erica: Yes, a large mass ratio makes things simpler. In that case we can make
the approximation that the heavy mass sits still in the center, and the lighter
mass moves around it. But that is only an approximation, and not completely
accurate. In reality, both masses move around each other, even though the
heavier mass moves only a little bit.

Even for the case where the masses are comparable, we can still talk about
the relative motion between the two particles. And we don’t have to make any
approximation. Here, let me draw a few pictures, to make it clear.

Since my notepad is two-dimensional, let us start by discussing the two-dimensional

two-body problem. Later, we can easily go to 3D. Here, in figure 3.1 I show the
positions of our two particles by drawing the position vectors ry,rs.

Carol: But in order to define those vectors, you first have to choose a coordinate
system, right?

Erica: Yes. We have to choose an z axis and a y axis, and they together make
up a coordinate system. The point of intersection of the two axes is called the

3.2, COORDINATE SYSTEMS 33

origin of the coordinate system. With respect to the origin, the positions of
the two bodies are pointed out by the tips of the arrows that stand for the two
vectors ry, ra.

Dan: I see the vectors, but I don’t see the bodies.
Erica: You have to imagine the bodies to reside at the very end of each arrow.
Carol: They are point masses, remember, so they are too small to see!

Erica: Well, yes, but of course I could still have drawn them as small points.
However, I wanted to keep the figures simple.

3.2 Coordinate Systems

Dan: What would happen if you had chosen a different coordinate system?

Erica: In that case, the tips of the arrows would stay at the positions of the
particles, since they would not change. However, the arrows themselves would
change, because they would be rooted in the new origin.

Dan: But could you really have chosen any coordinate system? And could you
then let it change or rotate or let it jump up and down? That seems rather
unlikely.

Erica: Ah, no, certainly not. Or more precisely, preferably not. If you choose
a coordinate system that moves in a strange way, you then have to correct for
those strange motions of the coordinate axes, which would be reflected in the
description of the motions of the particles. And you would then have to correct
for that, in the equations of motion.

Carol: I’'m not sure I follow all that, but I guess the upshot is that you want to
keep things simple, and therefore you prefer to use coordinates where the origin
stays at rest in space.

Erica: Yes, either at rest, or otherwise the origin should move at a constant
speed in one fixed direction. A coordinate system that moves in such a way is
called an inertial coordinate system. By the way, we use the term uniform mo-
tion for the type of motion that occurs at constant speed in the same direction.

Dan: Ah, that is a term I remember from my physics class. This is related to
the fact that Newton discovered that an object which does not feel any forces
will keep moving in a straight line with constant speed. Because of the inertia
of an object, you have to exert a force in order to change that type of motion.

Erica: Indeed. And this means that any object that feels no force will move
in a straight line at constant speed in any inertial coordinate system. But if
you start with, for example, a rotating coordinate system, then even an object
at rest seems to rotate in the opposite direction, when you describe its motion
with respect to the rotating frame.

34 CHAPTER 3. THE GRAVITATIONAL 2-BODY PROBLEM

MI MZ
[°

Figure 3.2: Two bodies at rest.

Dan: And all of this is related to Newton’s concept of absolute space, right?
And FEinstein showed that there is no such thing as absolute space.

Erica: The idea of an absolute space was a brilliant invention, very useful to
describe the phenomena on the level of classical mechanics. But when you deal
with high velocities, approaching the speed of light, or even with lower velocities
and very high accuracies, you have to take into account the fact that special
relativity gives a more accurate description of the world.

Carol: And general relativity is even more accurate, I presume?

Erica: Yes, but in general relativity space and time are curved, in a way that
is influenced by the distribution of masses and energy in the world. This means
that it is extremely difficult to make a computer simulation of the motion of
objects such as black holes when they approach each other.

Dan: I'm happy to keep things simple, for now at least, and to stick to Newton’s
classical mechanics.

Carol: So am I.

3.3 A Fourth Point

Dan: Okay, I got the picture. Now where does the one-body representation
come in?

Erica: It comes in through a clever coordinate transformation. The trick is to
add a fourth point to the picture given in fig. 3.1, besides the origin and the
positions of the two particles. The extra point is what is called the center of
mass of the system, often abbreviated to c.o.m. for simplicity.

Dan: You mean the point right in the middle of the two masses?

Erica: No, not if the particles have different masses. Here is the basic idea. Let
me draw two masses at rest, in fig. 3.2. Let particle number 1, at the left, be
twice as massive as particle 2, at the right: M; = 2M>. As soon as we let the
particles move freely, from rest, they will start falling toward each other.

Carol: Can you write down the equations? Sooner or later we’ll have to pro-
gram them, after all.

Dan: I hope it will be sooner!

Erica: In this very simple example, let us define the x axis of our coordinate

3.3. A FOURTH POINT 35

| Ml MZ
| ® o
0

Figure 3.3: Two bodies at rest, with the origin O of a one-dimensional coordinate
system shown at the left.

system to go through both particles, with the positive side at the right, as usual.
Carol: Where is the origin?

Erica: You can put the origin anywhere you want. For example, if you like
to put it to the left of My, as in fig. 3.3, then both particles are located on
the positive z axis, and therefore both particles have positive values for their
positions r; and 7o with respect to the origin. Moreover, ro > r1, so the distance
between the two particles is given as r = ro — 1.

But really, the position of the origin is not important; if you shift the origin to
the left or to the right, the value of r remains the same, and that’s the only
thing that counts.

Dan: Yes, I can see that as long as O stays to the left of both particles. But
how about the other cases? Let’s check. If we take O to be at the right, then
the two particle positions have negative values, with M, further away with
a more negative value, say r; = —5 and 7o = —3. In that particular case,
r=rg—r; =—3—(=5)=5—3=2. Okay, that gives the right answer.

The last possibility is to have O located right in between the two particles. In
that case, r1 is negative and r9 is positive, and clearly r = ro — ry is positive as
well. Good! T am convinced now that r = ro — ry is the right expression for the
physical distance between the two particles, with a value that is always greater
than zero, if the particles are not at exactly the same place.

Erica: In any of the tree cases that you just explored, the force that particle 1
feels from particle 2 is:

My M,
r2

F =G (3.1)

where r is the distance between the two particles and G is Newton’s universal
constant of gravity. Particle 1 is being pulled in the direction of the positive x
axis. This means that the velocity changes from zero to a positive value, which
in turn means that the acceleration is positive.

In contrast, particle 2 will be pulled to the left, and it will start to move with
a negative velocity, so its acceleration is negative. Other than this important
minus sign, we can simply reverse subscripts 1 and 2, which gives:

36 CHAPTER 3. THE GRAVITATIONAL 2-BODY PROBLEM

M] MZ
o— < o
a

Figure 3.4: Two bodies falling toward each other.

My M,

Fy=-G—%

. (3.2)

Dan: So the two forces are equal, but opposite in direction.
Carol: Action equals reaction, that’s one of Newton’s laws, right?

Erica: Right indeed, that is Newton’s third law. Now let us use Newton’s
second law, to see how the particles will actually start moving. His second law
is the famous

F1 = M1a1 (33)

and of course similarly

F2 = MQCLQ (34)

where a; is the acceleration that particle ¢ undergoes, due to the force Fj.

If we use these relations with Egs. (3.1, 3.2), we find

M,
and
My
ag = _GTT (36)

Carol: So even though the forces are equal, the accelerations are not. In the
case you mentioned, particle 1 is twice as massive as particle 2. That means
that the acceleration as of particle 2 is twice as large as the acceleration a; of
particle 1.

Dan: That makes sense. It takes twice as much force to move a particle that
is twice as massive.

3.4. CENTER OF MASS 37

3.4 Center of Mass

Erica: Let’s draw the accelerations, as arrows in the picture, fig. 3.2 that I
sketched earlier. Here they are, in figure 3.4.

Carol: And this means that the two particles start falling toward each other at
different rates, and therefore they will not meet in the middle.

Dan: They will meet closer to particle 1. In fact, because particle 2 will always
be accelerated twice as fast as particle 1, I bet they will meet at a point that is
one third of the way over, going from 1 to 2.

Carol: Could that be the fourth point that you talked about, Erica, what you
called the center of mass?

Erica: Yes, indeed! The center of mass, c.o.m., in the case of the two-body
problem, is the point of symmetry, around which each of the two bodies moves
in a way that is inversely proportional to their mass. As I remember it, the
position of the c.o.m. is given by

M17“1 + MQ?“Q
Tcom = 3.7
My + M, (3.7)

Let me show you explicitly how this all works, using the equations of motion,
Egs. (3.5, 3.6), where I will remind us that, for each particle, the acceleration
is the second derivative of the position:

d? Moy
and
d? M,

We are looking for the point around which everything else turns, a point that
does not get pushed, in other words, a point that does not undergo an accelera-
tion. Perhaps you can see how to find a point with zero acceleration, when you
add those two equations?

Dan: No, I don’t see that. Adding the right hand sides does not give zero.

Carol: Ah, but multiplying the first equation by M; and the second equation
by M- gives

d? M1 M,
eI

M,y (3.10)

and

38 CHAPTER 3. THE GRAVITATIONAL 2-BODY PROBLEM

d? My M,
MQ@TQ = -G 7‘2 (311)
so when we add the two equations we get zero at the right hand side:
d? d?
Mlﬁr1 + MzﬁTz =0 (3.12)

Dan: Okay, that I can see. But what does it mean?

Carol: Erica, correct me if I'm wrong, but I think what it means is that the
attractive gravitational forces that the two particles exert on each other are
balanced: equal but opposite in direction. For my own peace of mind, let me
summarize what I think has happened so far.

Eq. (3.1) is Newton’s gravitational equation, and so is Eq. (3.2), while (3.3)
and (3.4) express Newton’s law connecting force and acceleration. Combining
both of these Newtonian laws allows us to write (3.5) and (3.6) as Newton’s
gravitational equations in terms of acceleration rather than force. After that,
(3.8) and (3.9) are just rewriting (3.5) and (3.6) in a different notation. Then
(3.12) adds (3.8) and (3.9), showing thereby in a more formal way that the
attractions between the two stars cancel each other. We could have drawn that
conclusion directly from (3.1) and (3.2) as well, but there we would not yet have
had the information about the second derivatives of the positions.

Erica: Yes, that sums it up nicely. And we can write Eq. (3.12) as:

2
dt?

Notice that this expression looks a lot like the definition of the center of mass,
Eq. (3.7). Indeed, it implies that:

{Myry + Mara} =0 (3.13)

d? Miyry + Mors
S = .14
e { M + M, 0 (3.14)
and with Eq. (3.7) it can be written as:
d2
3 Teom =0 (3.15)

This means that the c.o.m. position will either be at rest, or move at a uniform
velocity, with zero acceleration.

Carol: Let’s check whether that makes sense in our case. We have My = 2Ms,
S0:

2Mory + Maors 2r1 4+ 1o 9 1
com — = =3 3 3.16
" 2Ms + Mo 241 371 32 ()

3.5. RELATIVE COORDINATES 39

M, M,
o °

A

c.o.m.

Figure 3.5: The center of mass is the point at rest, toward which the bodies fall.

Figure 3.6: Construction of alternative coordinates R and r for the center of
mass position and the relative position of the two bodies, respectively.

Indeed, this is the point that is twice as close to particle 1 as to particle 2.
Dan: Not so fast, how can you see that?

Carol: You can choose the origin of our coordinates where you like. Take
particle 1 to be the origin, for example, and you will get r; = 0 and then Eq.

(3.16) gives you reom = %rg. Or take particle 2 as the origin, which means
ro = 0 and Eq. (3.16) gives you 7eom = %rl, which means at a distance from

particle 2 that is two thirds on the way to particle 1.

Dan: Well, let me try your game too, at a somewhat more complicated point.
Let me put the origin of the coordinates exactly half-way between the particles.
In that case, r1 = —ry. Now let’s see what Eq. (3.16) gives me. Aha: 1o =
—%7"2 + %7"2 = —%Tg. What do you know! One third of the way from the origin
in the direction toward particle 1. Exactly the point that is twice as close to
particle 1 as to particle 2. Okay, I'm convinced!

40 CHAPTER 3. THE GRAVITATIONAL 2-BODY PROBLEM

3.5 Relative Coordinates

Erica: In the last few pictures we have dealt with a one-dimensional configu-
ration, two mass points on a line. This meant that we only had one coordinate
the worry about, the x value of the position. In the more general case of two
or three dimensions, we have to go back to vector notation. Eq. (3.7) in vector
form becomes:

erl + M2r2
R=————F-"- 3.17
My + M, ()

It is also convenient to define r as the relative position of the second particle
with respect to the first particle:

r=ry—r; (3.18)

I have drawn them in fig. 3.6 as they are constructed from ry, ro.

Dan: But now you have changed your mind, assuming that particle 2 is heavier
than particle 1!

Erica: Why not? These figures should be correct for any choice of masses. 1
just didn’t want to get stuck with the same simple choice for all the figures we
will draw.

Carol: So far, you have told us what the center of mass is, but you haven’t
told us why it is called that way. Looking again at Eq. (3.17), it seems that the
c.o.m. is the mass weighted position of an extended object. We use that notion
in computer graphics for computer games all the time. One way to look at it
is to ask yourself where you should support a rod with two weights attached at
the end. If one of the weights is twice as heavy as the other, it should be twice
as close to the support point as the other is, in order to balance the rod.

Dan: I see, that helps. So with ‘mass weighted’ you mean that I multiply the
position of each particle with its mass, so that more massive particles have a
larger vote, so to speak, in where the center of mass will be.

Carol: Yes, and then you have to divide by the total mass. Already on dimen-
sional grounds it is clear that you have to divide by a mass, as Erica told us, to
wind up with a result that has the dimension of length. And in the equal mass
case, it is clear that the c.o.m. should be the average of the two positions, the
point right in between them.

Dan: Okay, I am happy now with Eq. (3.17), which leads to fig. 3.6. But now
I'm confused about something else. Let us draw a figure that contains only the

two new vectors, R, r, that define the alternative coordinate system. Here it is,
fig. 3.7.

Now here is what seems odd. In fig. 3.1 the two vectors ry, ro start at the same

3.5. RELATIVE COORDINATES 41

Figure 3.7: Alternative coordinates R and r.

point, namely the origin. But in fig. 3.7 only the c.o.m. vector R starts in the
origin, while the relative position vector r connecting the two particles does not.

In other words, the two coordinate systems do not seem to be compatible.

Erica: Good point. It is true that the information contained in the pair of
vectors ry,rs is the same as the information contained in the vector pair R, r.
But in the first case, both vectors appear in the same inertial coordinate system,
while in the second case, only R is a vector in an inertial coordinate system,
while r points to particle 2 within a coordinate system anchored to particle 1,
which is certainly not inertial.

Carol: It is not inertial because particle 1 is not moving in a straight line at
constant speed. Is that what you mean?

Erica: Yes. Any coordinate system anchored to a particle that deflected by
forces acting upon it cannot be an inertial system.

Dan: So the vectors r1,ro, R are all defined in the same original inertial coor-
dinate system, while r is defined in a different coordinate system, which is not
inertial. Let me make that clear, and draw two new figures. Figure 3.8 shows
the c.o.m. vector in the original coordinate frame, while figure 3.9 shows the
relative separation vector in a different frame, anchored on particle 1, as you
just explained.

Erica: Yes, that is a nice way to split it out.

42

CHAPTER 3. THE GRAVITATIONAL 2-BODY PROBLEM

Figure 3.8: The vector R in the inertial coordinate system

Figure 3.9: The vector r in a non-inertial coordinate system

Chapter 4

A Gravitational 1-Body
Problem

4.1 Coordinates

Dan: But I'm still confused. You started talking about a change from absolute
to relative coordinates. But in fact we seem to switch from two vectors in
an absolute inertial coordinate system to two other vectors, one in the old
coordinate system and one in a new, non-inertial coordinate system. What is
going on?

Erica: I guess the notation and terminology in physics is rather sloppy. We
generally don’t try to be logically precise, the way mathematicians are. But I'm
glad you’re forcing us to be clear about our terms. It helps me, too, to build
things up again from scratch.

It seems that there are two ways to use the notion of coordinates. But let me
first summarize what we have learned.

We have, so far, dealt with two coordinate frames. We have the inertial one,
centered on an arbitrary point, a point that is either at rest or in uniform
motion with respect to absolute space. The coordinate axes point in fixed
directions with respect to absolute space. And we also have the non-inertial
frame, centered on particle 1. And although this frame is non-inertial, because
particle 1 feels the force of particle 2 and therefore does not move in a straight
line at constant speed, the coordinate axes of the non-inertial coordinate system
remain parallel to the coordinate axes of the inertial coordinate system.

This last point is important. When the two particles complete one orbit around
each other, the relative vector r will also complete one orbit in the non-inertial
coordinate system given in fig. 3.9.

43

44 CHAPTER 4. A GRAVITATIONAL 1-BODY PROBLEM

Now here are the two ways that physicists use ‘coordinates’, at least as I un-
derstand it. The first way is to give the coordinates of vectors with respect to
the coordinate frame in which they are defined. In that case, we have already
dealt with the coordinates of the four vectors rq,rs, R, r. In each case, a single
vector, or equivalently the values of the components of that vector, describe the
position of one particle with respect to a point in space. For example, ry de-
scribes the position of particle 2 with respect to the origin, and r describes the
position of particle 2 with respect to the point in space temporarily occupied
by particle 1.

The second way to talk about coordinates is to capture the information about a
whole system, and not just a single particle with respect to a point in space. We
can say that we have described a two-body configuration completely when we
give the information contained in the pair of vectors ry,rs, or equivalently, in
the values of their four components in two dimensions, or their six components
in three dimensions. But we can also describe the same two-body configuration
completely by giving the information contained in the pair of vectors R, r.

So in the second way of speaking, a coordinate transformation means a change
between describing the two-body system through specifying r1, ro and describing
the same system through specifying R, r.

In the beginning of our session, I used the second way of speaking. But then,
when we started talking about coordinate systems, I guess I slipped into the
first way of speaking.

Dan: Thanks for separating those two ways of speaking. I'll have to go over it
a few times more, to get fluent in this way of thinking, but I'm beginning to see
the light.

Carol: Now the beautiful thing is: it is possible to use the same language for
both ways of speaking. This is something else I learned in our ‘computer game’
class as we called it, although it was really titled as a ‘geometrical representation’
class. If a single vector lives in a d-dimensional space, then a system of two such
vectors can also be represented as a single vector in a 2d-dimensional space. And
then your second way of speaking with respect to the d-dimensional space boils
down to your first way of speaking with respect to the 2d-dimensional space.

Mathematically speaking, each choice of a set of two vectors, whether it is
{r1,r2} or {R,r}, determines a single point in the direct product of two copies of
the base space in which the single vectors live. In our case, we have started from
two-dimensional vectors, so the space for pairs of vectors is four-dimensional.
And the coordinate transformation that Erica has introduced is really a bijective
mapping between two four-dimensional spaces.

Dan: Just when I thought I understood something, Carol manages to make it
sound all gobbledygook again. T’ll just stick with Erica’s explanation.

4.2, EQUIVALENT COORDINATES 45
4.2 Equivalent coordinates

Carol: Well, I have one question left. I mentioned that the transformation
between the {ry,rs} coordinate system and the {R,r} was bijective. What
that means is that any pair {ry,ra} corresponds to a unique pair {R,r}, and
vice versa.

I think that is true, but I would like to prove it, to make sure, and to see
explicitly which pair of {r1,rs} corresponds to which pair of {R,r} vectors.

Dan: Good questions! Erica has shown how to derive R and r from r; and rs,
with the definitions above. But when we are given only R and r, can we then
really recover the original ry and ry?

Erica: Yes, we can, or at least I'm pretty sure we can. But we’ll have to scratch
our heads a bit to write it down. Let us start with figure 3.6. We can use the
same figure, but now we should consider R and r as given, and the question is
how to derive the values for r; and rs.

When I took my classical mechanics course, many homework questions were of
this type, and generally they involved a clever form of coordinate transformation.
Hmmm. Let’s see. Right now the origin is at an arbitrary point in space. We
could shift to a coordinate frame that is centered on one of our three special
points; the position of particle 1, the position of particle 2, or the position of
the c.o.m.

Well, why not start with particle 1, and see what happens. Let me draw the
new coordinate frame, using primed symbols: z’ and 3 instead of z and y for
the coordinate axes.

Carol: Ah, I see, that is a great move, really! In this new coordinate system,
the c.o.m. position is given by the vector R/, pointing from the position of
particle 1 to the c.o.m. This means that we can reconstruct r; as the sum of R
and —R/!

Dan: Wait a minute, not so quick. I don’t see that yet. Let me try to take
smaller steps. The vector —R’ must point, by definition, in the opposite direc-
tion of R’. So you can go from the old origin to r; by first following the vector
R from start till tip, and then following the vector —R’, which conveniently
starts at the tip of R. And the tip of —R’ lands on particle 1.

So far so good. And this means that we have r; = R + (—R/), or in simpler
terms

r, = R—Rl (41)

Fine! But how do we compute this vector —R/’?

Carol: Elementary, my dear Watson. In the old coordinate frame, we had Eq.
(3.17) which gave us the position vector of the c.o.m. in that frame. Let’s write

46 CHAPTER 4. A GRAVITATIONAL 1-BODY PROBLEM

—_——— e —

Figure 4.1: A shift of coordinate frame brings the origin to the position of
particle 1. In this new frame, the c.o.m. vector is R/.

4.3. CLOSING THE CIRCLE 47
it again:

Miry + Msrs
R=———"- 4.2
M; + M, (4.2)

This expression is valid in any coordinate frame, so we can use it for the new
primed coordinate frame as well. In the new frame, rj = 0 because the new
origin lies smack on the first particle, so that particle has distance zero to the new
origin. And the position vector of the second particle is given asry, = ro—r; =r.
Erica, your choice of coordinate frame shifting was brilliant! We have in the
new frame:

M) + Mor! M M. M.
R = Mary + Mory 10+ Mor 2 (4.3)
M1+M2 M1 +M2 Ml +M2

If we now use Eq.(4.1) that Dan just derived, and substitute the value of R/
that we found in Eq.(4.3), we get:

My

:R—i
r M1+M2r

(4.4)

4.3 Closing the Circle

Dan: And the second particle’s position is obtained simply by interchanging
the subscripts 1 and 2 everywhere, right?

Erica: Wrong, but almost right: there is an additional sign change. We can
show that in the same way as Carol just did, but putting the origin now in the
position of particle 2. Or, even simpler, we can look at the picture, which tells
us that:

My My + M,

ro=r;+r=R— r+ r
? ! My + M, My + Mo

(4.5)

So you see, this boils down to an expression with a plus sign, rather than the
minus sign in Eq.(4.4):

M,y

R4+ —
ro +M1+M2r

(4.6)

Dan: Okay, okay, I grant you your positive sign. But I'm still not fully satisfied.

Carol: First, starting with {ry,ro} we have derived expressions for {R,r}.
Then, starting with {R, r} we have derived expressions for {r;,ra}. What more
could you possibly want?!?

48 CHAPTER 4. A GRAVITATIONAL 1-BODY PROBLEM

Dan: Let me play the devil’s advocate. We are doing science, so I want to have
hard evidence! As you already saw, it is all too easy to replace a plus sign with
a minus sign and stuff like that, so we’d better make sure we really get things
right. Let me try to prove it my way.

Carol: Prove what?

Dan: Prove that we are consistent, and that we can close the circle of transfor-
mations, from {r;,r2} to {R,r} and then back again to {ry,rs}.

I will take Eq. (4.4) and then use the original definitions Eqgs. (3.17) and (3.18):

M,y
r = R—-————r
' M; + My
erl + M2r2 M2

= — ro —r
M+ M, Mt ah T

M + MQI‘ M, — Mgr
M+ My ' M+ My °
= I (47)

Yes, now I am convinced. And I can already see more or less how it works for
ro. But, to be really sure, I'd like to finish the job:

M,
M+ My
_ erl + M2r2 4 M1 (r2 _ I‘l)
M + My My + M,
My —M1r1 n M2+M1r2
My + My My + M
= ry (4.8)

Iy = R+

Carol: That is nice, I must admit, to see the truth in front of us so clearly.

Erica: I agree. Okay, all three of us are happy now. Let’s move on!

4.4 Newton’s Equations of Motion

Carol: Well, we got a new system of relative coordinates. I presume we're
going to use it for something, right?

Erica: Yes, time to rewrite Newton’s equations of motion into the new system.
For the one-dimensional case above, we used Egs. (4.9) in scalar form. Let me
write it in vector form. So this is the equation for the acceleration of the first
particle, due to the gravitational force that the second particle exerts on it:

4.4. NEWTON’S EQUATIONS OF MOTION 49

& M,

Here I have used the abbreviation

r=|r| (4.10)

for the absolute value of the vector r, which in our two-dimensional case can be
written as

r=z2+y> (4.11)

while in general, in 3D, it will be

SN (4.12)

I'm glad you both have at least some familiarity with differential equations.
It may not be a bad idea to brush up your knowledge, if you want to know
more about the background of Newtonian gravity. There are certainly plenty of
good introductory books. At this point it is not necessary, though, to go deeply
into all that. I can just provide the few equations we need to get started, and
for quite a while our main challenge will be to figure out how to solve these
equations.

Dan: Glad to hear that! But I'm puzzled about one thing. Why is there a
third power in the denominator? I thought that gravity shows an inverse square
attraction, not an inverse cube! And after all, that was what we wrote in Eq.

(4.9).

Erica: Yes, the magnitude of the acceleration is indeed proportional to the
minus second power of the separation. However, we also need to indicate the
direction of the acceleration. We can define a unit vector r pointing in the
direction of the second particle, as seen from the position of the first particle:

r
r=— 4.13

Using this unit vector, we can rewrite Eq. (4.9) as:

d? M,
—r; =G—t1 4.14
a2t r2 (4.14)
Dan: I see. So the magnitude is indeed inverse square, but the direction is
given by the unit vector, which has length one, and therefor does not influence
the length of the acceleration vector. I like this way of writing better, since it
brings out the physics more clearly.

50 CHAPTER 4. A GRAVITATIONAL 1-BODY PROBLEM

Carol: I guess that Erica wrote it in the form of Eq. (4.9) because it will be
easier to program that way.

Erica: Indeed. Once you get used to this way of writing the equations of
motion, there is no need to introduce the new quantity r, since it is not used
anywhere separately.

Let me also write the acceleration for the second particle:

d? M,

ﬁrz = _GTTI‘ (415)
Carol: Look Dan, another sign change: the force of attraction exerted by the
first particle on the second points toward the first particle.

Dan: Hmm, I'm still a bit confused about these signs. When the force points
to the first particle, why does that imply a minus sign?

Carol: The easiest way to see this is to take a particular case. Imagine that
the second particle is positioned in the origin of the coordinates. Since gravity
pulls particle 2 in the direction of particle 1, the acceleration that particle 2
experiences points in the direction of ri. Notice that in this particular case
r = ro, —r; = —ry. Therefore, the direction ry is the opposite of the direction
of r, hence the minus sign.

Dan: Ah, that is neat. Instead of trying to figure things out in full generality,
you take a particular limiting case, and check the sign. Sort of like what Erica
did, in constructing here a primed coordinate system. Since you already know
the magnitude and the line along which the acceleration is directed, once you
know the sign in one case, you know the sign in all cases.

Carol: Yes. Technically we call this invariance under continuous deformation.
If you bring the second particle a little bit out of the origin, by small continuous
changes, the acceleration between the particles must change continuously as
well; it cannot suddenly flip to the opposite direction.

Erica: Neat indeed: this means that understanding the sign in one place let
you know the sign in all places. I'll remember using that trick.

Okay, onward with the equations of motion. Given Egs.(4.9) and (4.15), we can
calculate the accelerations for the alternative coordinates by using the defining
equations (3.17) and (3.18), as follows.

diR _ Lfﬁr +&dir
a2 T M+ Mydt2 ' M, My di2?

M1 M2 M2 Ml
= 2 (¢)+ ——2 (-G
M1+M2(r3 r>+M1+M2(TS r)

e MM (1 1
Ml —|—M2 7'3 ’I”3

4.5. AN EQUIVALENT 1-BODY PROBLEM 51

-0 (4.16)
and
d? d? d?
azt T oaEr T e
My My
My + M,
= —GTP (4.17)

4.5 An Equivalent 1-Body Problem

Dan: The second equation looks like a form of Newton’s law of gravity, but
what does it mean that the first equation gives just zero as an answer?

Carol: Well, it seems that there is zero acceleration for the position of the
center of mass.

Dan: Ah, so the c.o.m. moves with constant velocity? But of course, that is
what we found in the one-dimensional case too.

Erica: Yes, and this means that we can choose an inertial coordinate frame that
moves along with the c.o.m., and in that coordinate frame the center of mass
does not move at all. And to make it really simple, we can choose a coordinate
frame where the c.0.m. is located at the origin of the coordinates.

Dan: That does make life simple. In this coordinate frame, all the information
about the motions in the two-body problem is now bundled in Eq. (4.17). It
almost looks as if we are dealing with a 1-body problem, instead of a 2-body
problem!

Erica: Yes, this is what I meant when I announced that we could map the
two-body problem into an equivalent one-body problem, for any choice of the
masses. The original equations (4.9) and (4.15) are coupled: both r; and ry
occur in both equations, indirectly through the fact that r = ro—r;. In contrast,
the equations (4.16) and (4.17) are decoupled.

A clear way to show this is to draw two separate figures, Figs. 3.8 and 3.9.
The c.o.m. vector in Fig. 3.8 moves in a way that is totally independent of the
way the relative vector in 3.9 moves. The c.o.m. vector moves at a constant
speed, while the relative vector moves as if it follows an abstract particle in a
gravitational field.

To see this, notice that Eq. (4.17) is exactly Newton’s equation for the gravita-
tional acceleration of a small body, a test particle, that feels the attraction of
a hypothetical body of mass M; + M. To check this, look at Eq. (4.4), and
replace ry by r and replace My by My + M.

52 CHAPTER 4. A GRAVITATIONAL 1-BODY PROBLEM

Dan: Indeed. So the relative motion between two bodies can be described as if
it was the motion of just one body under the gravitational attraction of another
body, that happens to have a mass equal to the sum of the masses of the two
original bodies.

Erica: Exactly. And to complete this particular picture, we have to make sure
that the other body stays in the origin, at the place of the center of mass.
We can do this by giving our alternative body a mass zero. In other words,
we consider the motion of a massless test particle under the influence of the
gravitational field of a body with mass M; + Ms, that is located in the center
of the coordinate system.

Carol: I prefer to give it a non-zero mass. No material body can have really
zero mass. Instead, we can consider it to have just a very very small mass. We
could call it €, as mathematicians do when they talk about something so small
as to be almost negligible.

Dan: If you like. I'm happy with the physical limit that Erica mentioned,
rather than the type of mathematical nicety that you introduced. Zero I can
understand. Because the test particle has zero mass, it exerts zero gravitational
pull on the central body. Therefore, the central body does not move at all, and
the only task we are left with is to determine the motion of the test particle
around the center.

And that is a one-body problem. Okay, I now see the whole picture.
4.6 Wrapping Up

Carol: Let us gather the formulas we have obtained so far, for our coordinate
transformation, from absolute to relative coordinates.

M,
ri = R — ————— I
! M + M,
(4.18)
M,
Iro = R + ————r
? M; + My
R — erl + M2r2
My + My (4.19)
r=r9—1I]
d? My
i = O
(4.20)
d? GMl

T e

4.6. WRAPPING UP 53

d2
R =0
(4.21)
@ _gMtM
a2~ 3

Dan: So from all these equations, what we are going to solve with our computer
program is the last one above, right?

Erica: Yes, and let me write the equation once again here:
d? My + M,
——r

-G

ﬁr = 7"3 (422)

And there is one more thing: let’s make life as simple as we can, by choosing a
system of physical units in which the gravitational constant and the total mass
of the 2-body system are both unity:

G =1
My+ DMy, = 1 (4.23)
Our original equation of motion now becomes simply:

d? r

Dan: I can’t imagine anything simpler than that! Let’s start coding.

54

CHAPTER 4.

A GRAVITATIONAL 1-BODY PROBLEM

Chapter 5

Writing the Code

5.1 Choosing a Computer Language

Carol: Let’s start coding! Which language shall we use to write a computer
code? I bet you physics types insist on using Fortran.

Erica: Believe it or not, most of the astrophysics code I'm familiar with has
been written in C++. It may not be exactly my favorite, but it is at least widely
available, well supported, and likely to stay with us for decades.

Dan: What is C++, and why the obscure name? Makes the notion of an
N-body problem seem like clarity itself!

Carol: Long story. I don’t know whether there was ever a language A, but
there certainly was a language B, which was followed alphabetically by a newer
language C, which became quite popular. Then C was extended to a new
language for object-oriented programming, something we’ll talk about later. In
a nerdy pun, the increment operation “++” from the C language was used to
indicate that C++ was the successor language to C.

Dan: But everybody I know seems to be coding in Java.

Carol: Java has a clear advantage over C++ in being almost platform inde-
pendent, but frankly, I don’t like either C++ or Java. Recently, I took a course
in which the instructor used a scripting language, Ruby. And I was surprised at
the flexible way in which I could quickly express rather complex ideas in Ruby.

Erica: Does Ruby have something like STL?

Carol: You mean the Standard Template Library in C++? Ruby doesn’t need
any such complications because it is already dynamically typed from the start!

Dan: I have no idea what the two of you are talking about, but I agree with
Carol, let’s start coding, in whatever language!

95

56 CHAPTER 5. WRITING THE CODE
5.2 Choosing an Algorithm

Carol: We want to write a simulation code, to enable us to simulate the be-
havior of stars that move under the influence of gravity. So far we have derived
the equations of motion for the relative position of one particle with respect to
the other. What we need now is an algorithm to integrate these equations.

Dan: What does it mean to integrate an equation?

Carol: We are dealing with differential equations. In calculus, differentiation
is the opposite of integration. If you differentiate an expression, and then inte-
grate it again, you get the same expression back, apart from a constant. Our
differential equations describe the time derivatives of position and velocity. In
order to obtain the actual values for the position and velocity as a function of
time, we have to integrate the differential equation.

Erica: And to do so, we need an integration algorithm. And yes, there is a large
choice! If you pick up any book on numerical methods, you will see that you can
select from a variety of lower-order and higher-order integrators, and for each
one there are additional choices as to the precise structure of the algorithm.

Dan: What is the order of an algorithm?

Erica: It signifies the rate of convergence. Since no algorithm with a finite time
step size is perfect, they all make numerical errors. In a fourth-order algorithm,
for example, this error scales as the fourth power of the time step — hence the
name fourth order.

Carol: If that is the case, why not take a tenth order or even a twentieth order
algorithm. By only slightly reducing the time step, we would read machine
accuracy, of order 107*° for the usual double precision (8 byte, i.e. 64 bit)
representation of floating point numbers.

Erica: The drawback of using high-order integrators is two-fold: first, they
are far more complex to code; and secondly, they do not allow arbitrarily large
time steps, since their region of convergence is limited. As a consequence, there
is an optimal order for each type of problem. When you want to integrate a
relatively well-behaved system, such as the motion of the planets in the solar
system, a twelfth-order integrator may well be optimal. Since all planets follow
well-separated orbits, there will be no sudden surprises there. But when you
integrate a star cluster, where some of the stars can come arbitrarily close to
each other, experience shows that very high order integrators lose their edge.
In practice, fourth-order integrators have been used most often for the job.

Dan: How about starting with the lowest-order integrator we can think of?
A zeroth-order integrator would make no sense, since the error would remain
constant, independent of the time step size. So the simplest one must be a
first-order integrator.

Erica: Indeed. And the simplest version of a first-order integrator is called the
forward Fuler integrator.

5.2, CHOOSING AN ALGORITHM o7

Figure 5.1: The forward Euler approximation is indicated by the straight arrows,
while the curved lines show the true solutions to the differential equation.

Figure 5.2: As figure 5.1, but now for the backward Euler approximation.

Dan: Was Euler so forward-looking, or is there also a backward Fuler algorithm?

Erica: There is indeed. In the forward version, at each time step you simply
take a step tangential to the orbit you are on. After that, at the next step,
the new value of the acceleration forces you to slightly change direction, and
again you move for a time step dt in a straight line in that direction. Your
approximate orbit is thus constructed out of a number of straight line segments,
where each one has the proper direction at the beginning of the segment, but
the wrong one at the end.

Dan: And the backward Fuler algorithm must have the right direction at the
end of a time step, and the wrong one at the beginning. Let’s see. That seems
much harder to construct. How do you know at the beginning of a time step in
what direction to move so that you come out with the right direction tangential
to a correct orbit at that point?

Erica: You do that through iteration. You guess a direction, and then you
correct for the mistake you find yourself making, so that your second iteration
is much more accurate, in fact first-order accurate. Given this extra complexity,
I suggest that we start with the forward Euler algorithm.

Carol: Can’t we do both, ie make half the mistakes of each of the two, while
trying to strike the right balance between forward and backward Euler?

58 CHAPTER 5. WRITING THE CODE

Erica: Aha! That is a good way to construct better algorithms, which then
become second-order accurate, because you have canceled the first-order errors.
Examples are second-order Runge Kutta, and leapfrog. We’ll soon come to
that, but for now let’s keep it simple, and stay with first order. Here is the
mathematical notation:

rit+1 = I; + Vldt
Vitl = Vit adt (51)

for the position r and velocity v of an individual particle, where the index i
indicates the values for time t; and ¢ 4+ 1 for the time ¢, after one more time
step has been taken: dt = t;11 —t;. The acceleration induced on a particle by
the gravitational forces of all other particles is indicated by a. So, all we have to
do now is to code it up. By the way, let’s rename the file. Rather than a generic
name nbody.rb, let’s call it euler.rb, or even better euler_try.rb. After all,
most likely we’ll make a mistake, or two, or more, before we're finished!

5.3 Specifying Initial Conditions

Carol: I have learned that in order to solve a differential equation, you have to
provide initial conditions.

Erica: Yes. It is like using a map: if you don’t know where you are, you can’t
use it. You start with the spot marked ”you are here”, and then you can start
walking, using the knowledge given by the map.

In our case, a differential equation tells you how a system evolves, from one
point to the next. Once you know where you are at time 0, the equation tells
you where you will move to, and how, in subsequent times.

So we have to specify the initial separation between the particles. How about a
simple choice like this?

r = {z,y,z} ={1,0,0}
v = {ug,vy,v.} ={0,05,0} (5.2)

Dan: Let me put this into words. The relative position vector is chosen along
the x axis at a distance of one from the origin. The origin is the place where
the other particle resides, and it is the origin of the relative coordinate system
that we use. And the relative velocity is chosen to be 0.5 in the direction of
the positive y axis. This means that the initial motion is at right angles to the
initial separation.

5.3. SPECIFYING INITIAL CONDITIONS 59

Carol: Would it not be easier to use a position of r = {1,0} and a velocity of
v ={0,0.5}, in other words, to work in two dimensions?

Erica: Well, as soon as we will do anything connected with the real universe,
we will have to go to 3D, so why not just start there, even though the two-body
problem is essential a 2D problem.

Dan: I don’t care, either way, let’s just move on. We have to translate what
Erica has just written into computer code. If it were Fortran, I would start
writing the first line as

Erica: That is how you would do it in C or C++ as well, although you first
would have to declare the type of x, by specifying that it is a number, in our
case a floating point number, even though we initialize it here with an integer.
The meaning of the equal sign, =, can be interpreted as follows: the value of the
right-hand side of the equation gets assigned to the variable that appears at the
left-hand side. In this case, the value of the right-hand side is already clear, it
is just 1, and after execution of this statement, the variable x has acquired the
value 1.

Carol: In Ruby you do the same as in Fortran or C or C++, or Java for that
matter. In general, Ruby is designed around the ‘principle of least surprise.” If
you have some experience with computer languages, you will find that whenever
you encounter something new in Ruby, it is not too far from what you might
have guessed.

Erica: So assignment is exactly the same as in C?

Carol: The assignment itself is exactly the same, but there is no need to declare
anything.

Erica: Really? How does Ruby now that the variable x can hold a floating
point number and not, say, a character string or an array or whatever?

Carol: In Ruby there is no need for variable declaration, simply because there
is nothing to declare: variables have no intrinsic type. The type of a variable
is whatever you assign to it. If you write x = 3.14, x becomes a floating point
number; and if you then write x = "abs", it becomes a string. This freedom
and flexibility is expressed by saying that Ruby is a dynamically typed language.

Erica: Isn’t that dangerous?

Carol: T expected it would be, but in my experience, I in fact made fewer
mistakes using Ruby than using so-called strongly typed languages, such as C
and C++. Or stated more precisely: what mistakes I made, I could catch far
more quickly, since it would be rather obvious if you assign pi = "abc" and then
try to compute 2*xpi*r and the like: you would get an error message telling you
that a string cannot be forced into a number.

60 CHAPTER 5. WRITING THE CODE

Erica: so this means that we can just list the six assignments for r = {1,0,0}
and v = {0,0.5,0}7 Like one line for each assignment?

Carol: You can write several assignments on one line, separated by semicolons,
but I prefer to keep it simple and do it one per line. Here they are:

x =1
y=0
z =0
vx = 0
vy = 0.5
vz = 0

By the way, does this specific choice of initial conditions mean that the two
particles will move around each other in a circle?

Erica: Probably not, unless we give exactly the right velocity needed for circular
motion. In general, the orbit will take the shape of an ellipse, if the two particles
are bound. If the initial speed is too high, the particles escape from each other,
in a parabolic or hyperbolic orbit.

Dan: Starting from the initial conditions, we have to step forward in time. I
have no idea how large the time step step dt should be.

Carol: But at least we can argue that it should not be too large. The distance
dr over which the particles travel during a time step dt must be very small
compared to the separation between the two particles:

dr=vdt<r (5.3)

With v =1 and r = 1, this means dt < 1.
Dan: In that case, we could take ‘much less than 1’ to mean 0.1, for starters.

Carol: I would prefer an even smaller value. Looking at fig. (5.1) we see how
quickly the forward Euler scheme flies off the tracks, so to speak. How about
letting ‘much less than 1’ be 0.017 We can always make it larger later:

dt = 0.01

5.4 Looping in Ruby

Erica: We now know where we start in space, and with what velocity. We also
know the size of each time step. All we have to do is start taking steps.

5.4. LOOPING IN RUBY 61

Dan: With a tiny time step of dt = 0.01, we’ll have to take at least a hundred
steps to see much happening, I guess. And to go a bit further, say from time
t =0 to time ¢ = 10, we will need a thousand steps.

Erica: That means we have to construct a loop. Something like ‘for ¢ = 1 till
i = 1000 do something.” At least that is how most computer languages express
it. I wonder how ruby does it.

Carol: Let’s have a look at the Ruby book. How do you repeat the same thing
k times? Ah, here it is. That looks funny! You write k.times! So to traverse
a piece of code 1000 times, you enclose that piece of code within the following
loop wrapper:

1000. times{
}

Dan: Surely you are joking! That is carrying the principle of least surprise a
bit too far to believe. How can that work? Can a computer language really stay
so close to English?

Carol: The key seems to be that Ruby is an object-oriented language. Each
‘thing’ in ruby is an object, which can have attributes such as perhaps internal
data or internal methods, which may or may not be visible from the outside.

Dan: What is a method?

Carol: In Ruby, the word method is used for a piece of code that can be called
from another place in a longer code. In Fortran, you call that a subroutine,
while in C and C++ you call it a function. In Ruby, it is called a method.

Erica: I have heard the term ‘object-oriented programming.” I really should
browse through the Ruby book, to get a bit more familiar with that approach.

Dan: We all should. But for now, Carol, how does your key work? Is the
number 1000 also an object?

Carol: You guessed it! And every number has by default various methods
associated with it. One method happens to be called times.

Erica: And what times does is repeat the content of its argument, whatever is
within the curly brackets, k times, if the number is k.

Carol: Precisely. A bunch of expressions between curly brackets is called a
block in Ruby, and this block is executed k times. We will have to get used to
the main concepts of Ruby as we go along, but if you want to read about Ruby
in more systematic way, here is a a good place to start', and here is a web site
specifically aimed at scientific applications?.

Thttp://wuw.rubycentral.com/
2http://sciruby.codeforpeople.com/

62 CHAPTER 5. WRITING THE CODE

5.5 Interactive Ruby: irb

Dan: Amagzing. Well, I would be even more amazed to see this work.

Carol: Let’s test it out, using irb. This is an interactive program that allows
you to test little snippets of Ruby code. Let us explore what it can do for us.
You can invoke it simply by typing its name:

|lgravity> irb
quit

and you can get out at any time by typing quit.
Dan: I like your prompt!

Carol: Well, I called my computer ‘gravity’, and I set up my shell to echo the
name of my computer, so that’s why it shows up here.

Dan: Quite appropriate. Now how do we interact with irb?

It seems that we can now type any Ruby expression, which will then be evaluated
right away. Let me try something simple:

|gravity> irb
2+ 3

5

quit

Erica: How about going from arithmetic to algebra, by using some variables?

|gravity> irb

a=4
4

b=25
5
c=ax*xb
20

quit

I see. At the end of each line, the result of the operation is echoed. And the
value 20 is now assigned to the variable c.

Carol: Indeed. Time to test Ruby’s looping construct:

5.6. COMPILED VS. INTERPRETED VS. INTERACTIVE 63

|gravity> irb

c =20

20

3.times{ ¢ += 1 }
3

c

23

quit

Perfect! We started with 20 and three times we added 1.
Dan: ah,soc += 1isthesameasc = ¢ + 17

Carol: Yes. This is a construction used in C, and since taken over by various
other languages. It applies for many operators, not only addition. For example,
c *= dis thesame asc = ¢ * d.

5.6 Compiled vs. Interpreted vs. Interactive

Erica: This irb program is quite useful clearly, but I'm puzzled about the
various ways in which we can use Ruby. We are now writing a Ruby program,
by adding lines to a file, in just the same way we would be writing a C or Fortran
program, yes?

Carol: Yes and no. Yes, it looks the same, but no, it really is a quite different
approach. Ruby is an interpreted language, while C and Fortran, and C++ as
well, are all compiled languages. In Ruby, there is no need to compile a source
code file; you can just run it directly, as we will see soon.

This, by the way, is why Ruby is called a scripting language, like Perl and
Python. In all three cases, whatever you write can be run right away, just like
a shell script. As soon as we have finished writing our program, we will run
it with the command ruby in front of the file name, in the same way as you
would run a cshell script by typing csh filename. In our case we will type
ruby euler_try.rb.

Erica: So the difference is that in C you first compile each piece of source code
into object modules, and then you link those modules into a single executable
file, and then you run that file — whereas in Ruby the script itself is executable.

Carol: Exactly.

Erica: But what is the difference between typing ruby and typing irb? If the
ruby command interprets each line as it goes along, what does irb add?

Carol: The difference is the i in irb, which stands for interactive. In the case
of irb, each line is not only interpreted, it is also evaluated and the result is
printed on the screen. In this way, you can look into the mind of the interpreter,
so to speak, and you can follow step by step what is going on.

64 CHAPTER 5. WRITING THE CODE

Dan: It sounds a bit like going into a debug mode.

Carol: I guess you could say that, yes. However, if you run a Ruby script using
the command ruby, you only get results on the screen when you give a specific
print command, such as print, as we will see.

And just to give full disclosure, there is another hitch. If you are starting to
write a loop, say, you may have included an open parenthesis, but not yet a
closing parenthesis. In irb that is no problem; in fact, the prompt will change,
to indicate that you are one or more levels deep inside nested expressions. But
if you try to run such an incomplete file with the ruby command, you will get
an error message, even before the Ruby interpreter starts.

Here is what happens. Upon typing ruby some-file.rb, a syntax check is
being carried out on the file some-file.rb. If the parentheses are not balanced,
a syntax error is produced, and the real interpreter part of Ruby is not even
started up.

Dan: Just like what happens in Fortran, when you get a compile error!

Carol: Yes, in a way. And to make things more confusing, many people tend
to call such an error a ‘compile error’, even when working with Ruby, even
though in Ruby the code is not really compiled, strictly speaking. The problem
is that so-called compile errors in compiled languages are really syntax errors;
and interpreted languages can of course have syntax errors as well. So when
you hear someone telling you ‘my Ruby (or Perl and Python) program didn’t
compile,” they mean ‘my script had syntax errors.” However, strictly speaking,
Ruby initially parses the input program and transform it to a tree structure,
and then the interpreter actually traces this tree structure, not the text string
itself. So it is not entirely incorrect to say that ruby first ”compiles” a program.
But this is probably more than what you would want to know at this point.

5.7 One Step at a Time

Erica: All that is left for us to do is to write the content of the loop. That
means we have to describe how to take a single step forward in time.

Specifically, at the start we have to tell the particles how to move to their next
relative position, from our starting point of time ¢ = 0 to ¢t = 0.01, in our
case. Or for a general dt value, using the forward Euler approximation (5.1),
we obtain the position r = {r,,r,, 7.} at the end of the first step:

x += vx*xdt
y += vy*dt
z += vzxdt

In addition, we have to tell the particles what their new relative velocity v =
{vg, vy, v, } should be. Using the same forward Euler construction, we can write:

5.7. ONE STEP AT A TIME 65

vx += ax*dt
vy += ax*dt
vz += az*dt

using the acceleration vector a = {ay,ay,a.}.
Dan: But we haven’t calculated the acceleration a yet!

Carol: This is an important example of code writing, something called ‘wishful
thinking’ or ‘wishful programming’. You start writing a code as if you already
have the main ingredients in hand, and then you go back and fill in the com-
mands needed to compute those ingredients.

Dan: That sounds like a top-down programming approach, which makes sense:
I like to start with an overview of what needs to be done. It is all too easy
to start from the bottom up, only to get lost while trying to put all the pieces
together.

Erica: To compute the acceleration, we have to solve the differential equation
for the Newtonian two-body problem, Eq. (4.24). T will copy it here again:

r
a=—— 5.4
. (5.4)
Dan: Can you write it out in component notation?
Erica: Sure:
T
Gy = ——
x 7'3
a, = -2
Y 7,3
z
a; = —— 5.5
z 7’3 ()

where the magnitude of the separation r is defined as

r=+z2+y2%+ 22 (5.6)

Let me start with the last line. Since we will often need the square of the scalar
distance between the particles, we may as well first compute r? = 22 4+ y? + 2%

r2 = x*x + y*y + zxz

Carol: Let’s see whether I remember my vector analysis class. The quantity r
is called a vector, and the quantity r is called a scalar, right?

66 CHAPTER 5. WRITING THE CODE

Erica: Indeed. The last quantity is a scalar because it is independent of your
choice of coordinate system. If we rotate out coordinates, the values of x and of
y and of z may all change, and therefore r will change. However, r will stay the
same, and that is a good thing: it denotes the physical distance between the
particles, something that you can measure. When two people use two different
coordinate systems, and both measure r, the value they find had better be the
same.

Dan: My Ruby book tells me that you must add the line

include Math

in order to use the square root method sqrt, where the term method is used in
the same way the word function is used in C and the word subroutine is used in
Fortran. The include statement is needed to gain access to the Math module
in Ruby, where many of the mathematical methods reside.

Erica: Thanks! Now the rest is straightforward. To code up Eq. (5.5), we first

need to determine 72, and a simple way to do that is to write it as a product of

two express we have already found: r% = r2r:

r3 = r2 * sqrt(r2)
ax = - x / 3
ay = -y / r3
az = -z / 13

5.8 Printing the Result

Dan: Shall we see whether the program works, so far? Let’s run it!

Erica: Small point, but . . . perhaps we should add a print statement, to get
the result on the screen?

Carol: I guess that doesn’t hurt! The Ruby syntax for printing is very intuitive,
following the Ruby notion of the ‘principle of least surprise’:

s Vs , Z, " ||)

, VY, , vz, "\n")

print(x,
print(vx,

Erica: I like that principle! And indeed, this couldn’t be simpler!
Dan: Apart from this mysterious \n at the end. What does that do?

5.8. PRINTING THE RESULT 67

Carol: It prints a new line. This notation is borrowed from the C language.
By the way, I'd like to see a printout of the position and velocity at the start
of the run as well, before we enter the loop, so that we get all the points, from
start to finish.

Erica: Fine! Here it is, our first program, euler_try.rb, which is supposed to
evolve our two-body problem for ten time units, from t = 0 till t = 10:

include Math

x =1

y =

z =0

vx = 0

vy = 0.5

vz = 0

dt = 0.01

print(x, " ", y, " ", z, " ")
print(vx, " ", vy, " ", vz, "\n")

1000. times{
r2 = X*¥X + y*xy + z*z
r3 = r2 * sqrt(r2)

ax = - x / r3
ay = -y / r3
az = -z / r3
X += vx*dt
y += vy*dt
z += vz*xdt

vx += axxdt

vy += ax*dt

vz += az*xdt

prlnt (X, n n , y, s Z, n ")
print(vx, " ", vy, , vz, "\n")

68

CHAPTER 5.

WRITING THE CODE

Chapter 6

Running the Code

6.1 A Surprise

Carol: Well, let’s see what happens. I don’t want to look at a thousand lines
of output. I will first run the code, redirecting the results into an output file,
called euler_try.out:

|gravity> ruby euler_try.rb > euler_try.out

In that way, we can look at our leisure at the beginning and at the end of the
output file, while skipping the 991 lines in between times 0, 0.01, 0.02, 0.03,
0.04 . . . 9.96, 9.97, 9.98, 9.99, 10.

|gravity> head -5 euler_try.out

1 0 0 0 0.5 O

1.0 0.005 0.0 -0.01 0.49 0.0

0.9999 0.0099 0.0 -0.0199996250117184 0.480000374988282 0.0

0.999700003749883 0.0147000037498828 0.0 -0.0300001547537506 0.469999845246249 0.0
0.999400002202345 0.0194000022023453 0.0 -0.0400029130125063 0.459997086987494 0.0
|gravity> tail -5 euler_try.out

-19.9935403671885 -16.0135403671885 0.0 -2.24436240147761 -1.74436240147762 0.0
-20.0159839912033 -16.0309839912033 0.0 -2.24435050659793 -1.74435050659793 0.0
-20.0384274962693 -16.0484274962693 0.0 -2.24433863791641 -1.74433863791641 0.0
-20.0608708826484 -16.0658708826485 0.0 -2.24432679534644 -1.74432679534644 0.0
-20.0833141506019 -16.0833141506019 0.0 -2.2443149788018 -1.74431497880181 0.0

Dan: A lot of numbers. Now what? We’d better make a picture of the results,
to see whether these numbers make sense or not. Let’s plot the orbit.

69

70 CHAPTER 6. RUNNING THE CODE

Erica: T agree, we should do that soon. But hey, the numbers do tell us
something already, they tell us that there is something seriously wrong!

Carol: How can you tell?

Erica: At the end of the run, the distance between the two particles is more
than 25 in our units, as you can see by applying Pythagoras to the last numbers
in the first two columns: /202 + 162 = 25.

Dan: So what?

Erica: A bit large already for my taste, but what clinches it is the velocity
difference between the particles, which is more than 1/2.22 + 1.72 ~ 2.8.

Dan: So what?

Erica: We started out with a velocity difference of only 0.5, so we have increased
the velocity by more than a factor of more than 5, while increasing the distance
by a factor of more than 25. When two particles move away from each other,
they should slow down, not speed up, because gravity is an attractive force.

Carol: I see, yes, that is strange.
Dan: Even more reason to make a plot!

Carol: How about using gnuplot? That one is present on any system running
Linux, and something that can be easily installed on many other systems as
well. The style is not particularly pretty, but at least it will give us something
to look at.

Dan: How do you invoke gnuplot?

Carol: To use it is quite simple, with only one command needed to plot a
graph. In our case, however, I'll start with the command set size ratio -1.
A positive value for the size ratio scales the aspect ratio of the vertical and
horizontal edge of the box in which a figure appears. But in our case we want
to set the scales so that the unit has the same length on both the x and y axes.
Gnuplot can be instructed to do so by specifying the ratio to be -1. In fact, you
can write the line set size ratio -1 in a file called .gnuplot in your home
directory, if you want to avoid repeating yourself each time you use gnuplot.
But for starters, I'll give the command specifically.

The next command we need to use is plot <filename> which by default will
plot the data from the first two columns from the file filename. And of course,
you can specify other columns to be used, if you prefer. However, in our case,
the first two columns just happen to contain the x and y values of the positions,
so there is no need to give any further specifications.

Now let’s have our picture, in fig 6.1:

|gravity> gnuplot
gnuplot> set size ratio -1
gnuplot> plot "euler_try.out"

6.2. TOO MUCH, TOO SOON 71

"euler!try.oul" +

Figure 6.1: First attempt at integrating the two-body problem: failure.

gnuplot> quit

6.2 Too Much, Too Soon

Dan: Hmmm, that is not what I expected to see. What a disappointment!

Erica: Well, research is like that — the first time you do something, it almost
never works.

Carol: Good thing you called the program euler_try.rb!

Dan: It seems as if the system exploded. Why would the two particles fly apart
like that?

Erica: That’s what we have to find out. And we’d better be systematic.

Dan: How will we ever find out what is the case? Shall we look at the code,
line by line, to see whether we made a mistake? It is such a short code, there
are not that many ways to do something wrong!

Carol: That’s not the right approach. If you are starting from the wrong
assumptions, just looking at the code will not help you to realize what was
wrong with your thinking, no matter how long you stare at it.

Dan: Research is difficult! If this would be an exercise out of a book, at least

72 CHAPTER 6. RUNNING THE CODE

the answer would be in the back, or we could ask a teaching assistant . . .

Erica: Yes, research is difficult, but it also is a lot more fun than chewing on
home work assignments. You know, when you start playing in your own way,
very soon you start doing things that in that exact form nobody else has ever
done before. Isn’t that a thrill?!

Dan: It would be a thrill if we could make progress. Frankly, I'm lost.

Carol: I must admit, I don’t see a clear way ahead either, but at least I remem-
ber that one of my teachers told us to ‘divide and conquer’ while troubleshooting.
In other words, if something goes wrong in a complex situation, try to simplify
everything by dividing whatever procedure you have applied in smaller, more
modular steps. That way, you can try to see in which step something goes
wrong,.

Erica: That makes sense. And I remember hearing a graduate student tell us,
while we were struggling with a computer program: ‘simplify, simplify.” The idea
was to first look at the simplest possible parameter choice, because in simpler
cases it is often easier to see what goes wrong.

Dan: You mean that we have done too much, too soon, by taking a rather
arbitrary choice of initial conditions, and a thousand steps?

Erica: Exactly. The notion of ‘divide and conquer’ tells us that we’d better do
one integration step at a time, instead of a thousand. And the idea of ‘simplify,
simplify’ suggests that we start with a circular orbit, rather than the more
general case of an elliptic orbit.

6.3 A Circular Orbit

Carol: So we have to find out what the correct velocity is, for two particles at
a distance of 1, in order to move in a circle. It seems to be larger than 0.5, but
how much larger?

Dan: Large enough that the particles don’t fall toward each other but not so
large that they start moving away from each other. Hmm. How can we picture
that? Imagine that we would move the two particles in a circular orbit around
each other, and measure how much force we have to use to keep them in the
circular orbit. We could then require gravity to do the work for us, and insist
that the gravitational force would be just equal to the force that we would have
to apply by hand.

Erica: Or rather that letting gravity provide the right force, it is easier to
compare accelerations, rather than forces. Let us insist on gravity providing the
right acceleration.

For the equivalent one-body problem, in our choice of units, the the gravita-
tional acceleration is given in Eq. (4.24). Since we are only interested in the

6.4. RADIAL ACCELERATION 73
magnitude, we can write it as:

1
a’grav = 7"72 (61)

The acceleration that a particle feels, when being forced to move exactly in a
circular orbit is simply given by:

<

Qcire = 7 (62)

Dan: What do you mean ‘simply given’, how do you know?

Erica: Oh, I just remember, it is one of the standard equations I learned in
classical mechanics.

Dan: Well, I don’t remember, and while I'm sort-of happy to take your word
for it, I would be much happier to see whether we can derive it, so that we know
for sure we have the right expression.

Carol: Me too, I'm with Dan here.

Erica: Well, hmmm, I suppose we can go to the library and look it up in a text
book on classical mechanics. Any textbook should tell you how to derive that
expression. Frankly, I don’t remember now how we did it.

Dan: It would be much faster to look it up on Google. But of course, then you
have to wonder whether it was done correctly or not.

Carol: Come on, it can’t be that hard. And it is much more fun to derive
it ourselves rather than look it up. No Dan, I don’t even want to look at
Google. Here, let’s take a piece of paper, and derive both the first and the
second derivatives of the scalar distance r between the two particles. When we
force both derivatives to be zero, we now that r will remain constant forever,
since equations of motion are second-order differential equations.

Dan: Well, before I ask what you mean, let me first see what you do.

6.4 Radial Acceleration

Carol: We start with the definition of r as the absolute value or, if you like,
the length of the vector r:

r=(r- r)l/2 (6.3)

I will now determine its first time derivative:

(6.4)

74 CHAPTER 6. RUNNING THE CODE

On a circular orbit, the distance between the particles is supposed to remain
constant, which means dr/dt = 0, and the only way to guarantee this, accord-
ing to the equation I just derived, is to insist that the vectors r and v are
perpendicular, so that r - v = 0.

Erica: That makes sense: on a circular orbit the velocity has no component in
the direction toward the other particle, so it is indeed perpendicular.

Dan: There is something I don’t understand. In the equation above, you
start with the expression dr/dt. But isn’t that the velocity? If you insist that
dr/dt = 0, aren’t you telling us that the velocity is zero? But in that case the
two particles would start falling toward each other, the next moment!

Carol: Which they don’t. You are confused with the expression v = |v| =
|dr/dt| which is the absolute value of the velocity, and it is a very different
beast than what I just wrote down. So it is important to realize that, yes, in a
one-dimensional situation you can write

dr
i v [1D] (6.5)

but in a two-dimensional or three-dimensional situation this is no longer true in
general; in a typical situation we have

d
CTZ;AU (kD , k>1] (6.6)

Dan: Hmmm. Vector analysis is tricky.
Carol: Until you get used to it.
Dan: Well, that’s true for everything.

Carol: Fair enough. Okay, onward to the second derivative of the separation
between the two particles:

d? 1d d1
preU A R R G Ol
1 /dr +1 dv o) 1\ d
- r\at Y P\ v 2) at”
1 1 (r-v)?
= —-v:v+t-r-a--—5—
r r r
2
v
_ v 6.7
o —a (6.7)

At the end of the second line I substituted the result of Eq. (6.4), and at the
end of the third line, I used the fact that the position and velocity vector are
perpendicular to each other, as we had just derived above. I also used the fact

6.5. VIRIAL THEOREM 75

that the acceleration vector a points in the opposite direction of the separation
vector r, which means that r-a = —ra.

For a circular orbit, we must insist that the separation r between the particles
remains constant. This means that the time derivative dr/dt = 0, and of course
the same holds for the second derivative in time, d?r/dt> = 0. And there we
are, Eq. (6.7) then gives us:

a=— (6.8)

Dan: Wow, that is exactly the acceleration that Erica remembered, needed to
sustain a circular motion.

Erica: Neat! Satisfied, Dan?
Dan: Sure thing!

Carol: Let’s see why we did all this. Ah, we wanted to balance the gravitational
acceleration provided and the acceleration needed to keep a motion being nicely
circular. We already found that agrqy = 1 /7"2, so this means:

v? 1
R 6.9
=3 (6.9)
or simply:
1
2
== 6.10
= (6.10)
or equivalently
T (6.11)

In our first attempt at orbit integration, we started with an initial condition
r = {1,0,0} which implies r = 1, but we used an initial velocity of v = {0,0.5,0}
which means that v = 1/4, much too small a value for a circular orbit! It should
have been v = 1, according to what we just derived.

Dan: Ah, so we should have used v = {0,1,0} for the initial velocity. Great!
Good to know.

6.5 Virial Theorem

Erica: You know, while Carol was doing her virtuoso derivation act, I suddenly
remembered that there is a much quicker way to derive the same result from
scratch.

76 CHAPTER 6. RUNNING THE CODE

Carol: Show me! I find that hard to believe.

Erica: It just occurred to me that I could use the virial theorem, which tells us
that for any bound system, on average the potential energy is equal to minus
twice the kinetic energy in the c.o.m. frame. For a circular orbit, both the
potential and kinetic energy remain constant, so we don’t even have to do any
averaging.

In our case, we can use Eqgs. (4.4) and (4.6) to write the kinetic energy as:

Ekin = %Ml’U% + %Mz’l}%
M, 2 M, 2
1 1
b (e v) e (5
M7 M
T DA
(M + Ma)
M M-
1 15442 2
= z— 6.12
M+ My ¢ (6.12)
The potential energy is simply:
M7 M.
Epot = — G 1T 2 (6.13)
The virial theorem tells us that E,,; = —2E};,, which gives us:
MMy My Mo
e —— =G 6.14
M1 -+ MQ v T ()
or:
My + M-
e k| (6.15)
r
In our units, G = M7 + M5 = 1 and therefore we have:
1
= /= 6.16
v=1/- (6.16)

So here you are: for an initial separation of 1, we need an initial velocity of 1.

Carol: I must admit, you got the right answer and your derivation is a bit
simpler than the one I just gave. But I have never heard of the virial theorem.
What does it mean?

Erica: Weeeeellll, that’s quite a long story. I'm not sure whether we should go
into that right now. If you really want to know, you can look at a text book,
but . . .

6.6. CIRCULAR MOTION T

Dan: . . . Google gives me a whole bunch of sites. Let’s look at a few.
Hmmmm. A bit too much math, this one. . . Ah, this one looks easier, with
more words and simple examples . . .

Carol: So we know we can look it up when we have to. I agree with Erica, I'd
rather move on.

6.6 Circular Motion

Dan: Wait a minute, each of you have just given a detailed derivation, and
now you're suddenly in a hurry. You know what? I bet that I can give an even
simpler derivation, and that without using complicated vector calculus or the
vitrial theorem.

Erica: virial theorem.

Dan: Whatever. Here is my suggestion. Why not just write down the circular
orbit itself, as if we had already derived it? I don’t remember much from my
introductory physics class, but I do remember how neat it was that you could
write down a simple circular motion in two dimensions in the following way, for
the position:

x = Acos(wt)
(6.17)
y = Asin(wt)

Now this is easy to differentiate. No vector notation, just simple coordinate
operations. By differentiation with respect to time, the velocity vectors become:

vy = —Awsin(wt)
(6.18)
vy = Aw cos(wt)
One more differentiation, and we get the acceleration components:
a, = —Aw? cos(wt)
(6.19)
a, = —Aw?sin(wt)
Comparing Egs. (6.17) and (6.19), we find
a=—w’r (6.20)

We have seen in Eq.(6.1) that for our initial condition » = 1 we have a = 1, so
this means that w = 1. Well, Eq. (6.18) now tells us that v = 1. Isn’t that
simple?

78 CHAPTER 6. RUNNING THE CODE

Erica: Yes, it is very simple, I'm surprised!

Dan: I must admit that I'm a bit surprised too, that it came out so easily. And,
frankly, I'm surprised that I came out correctly!

Carol: But working in coordinates like that is not very elegant.

Erica: Oh, come on, Carol, give the guy a break! What counts is to get the
right answer, and you must admit that his solution is simpler than either of our
ways of deriving the same answer. Let’s just be glad that all three methods
gave the same answer!

Carol: Ah, you physicists, you're so pragmatic! I’d prefer a bit more style.

Dan: Well, each her own style. I'm happy now, and ready to move on!

6.7 Omne Step at a Time

Erica: Which means that we’ve answered the ‘simplify, simplify’ part of our
task of trouble shooting: we now know how to launch the two-body problem on
the simplest possible orbit, that of a circle.

The other task was ‘divide and conquer’, and we had already decided to start
with just one step.

Dan: That’s a simple change in our program: we can just take out the loop.
Carol: Okay, here is the new code. Let me call it euler_try_circular_step.rb.
Dan: You sure like long names! I would have called it euler_trycs.rb.

Carol: Right. And three days later you will be wondering why there is a
program floating around in your directory that seems to tell you that it uses
Euler’s algorithm for trying out cool stuff, or for experimenting with communist
socialism or for engaging in some casual sin. No, I'm a big believer in looooong
names.

Erica: I used to be like Dan, but I’ve been bitten too often by the problem you
just mentioned, that I could for the life of me not remember what the acronym
was supposed to mean that I had introduced. So yes, I'm with you.

Dan: Fine, two against one, I lose again! But I'll be gs, oops, I mean a
good_sport.

Carol: What do you think of this version of euler_try_circular_step.rb?

include Math

x =1
y=0
z =0

6.7. ONE STEP AT A TIME 79

vy = 1

vz = 0

dt = 0.01

print(x, n n’ y’ " u’ z, " ||)
pI'iIlt(VX, n ||’ vy, n ||, vz, "\Il")

r2 = X*X + yxy + z*z
r3 = r2 *x sqrt(r2)

ax = - x / r3
ay = -y / r3
az = -z / r3
x += vx*xdt
y += vy*dt

z += vzxdt
vx += axxdt
vy += ax*dt
vz += azxdt

print(x, s Y , Z, " ")

print (vx, , VY, , vz, "\n")

Erica: Let’s see: you got the circular velocity correct, a value of unity as it
should be. And instead of looping, you print, take one step, and print again.
Hard to argue with!

Dan: Let’s see whether it gives a reasonable result.

80

CHAPTER 6.

RUNNING THE CODE

Chapter 7

Debugging the Code

7.1 One Integration Step: Verification

Carol: This is about the simplest thing we could possibly do, for the one-body
problem: starting with a circular orbit, and then taking only one small step.
Here we go . . .

|gravity> ruby euler_try_circular_step.rb
1 0 0 0 1 0
1.0 0.01 0.0 -0.01 0.99 0.0

Dan: . . . and getting just one short new line of output, after the initial
conditions are echoed. Nice and simple!

Erica: Simple, yes, but correct? Let’s compute the numbers by hand, to see
whether our program gave the right answers. We start with

r(0) = {x,y,2} = {1,0,0} (7.1)

and

V(O) = {Uﬂcv Uy, UZ} - {07 1, 0} (72)
so the new position must be:
r(dt) =r+ vdt = {1,dt,0} (7.3)
and since we are using dt = 0.01, we expect:

81

82 CHAPTER 7. DEBUGGING THE CODE

r(dt) =r + vdt = {1,0.01,0} (7.4)
Carol: And this is indeed what we see in the first half of the second output
line.

Dan: That is encouraging! Now what about the second half of the second
output lines?

Erica: To compute the new velocity, we have to first compute the acceleration
vector. We can use Eq. (4.24), which T'll copy here once again:

In our case this gives
a={ag,ay,a.} ={-1,0,0} (7.6)
And this in turn means that
v(dt) = v +adt = {—dt,1,0} = {-0.01,1,0} (7.7)

Carol: And this is not what is printed in the last half of the last output line,
in our one-step program.

Dan: Spot on! We should have gotten {—0.01,1,0}, but we somehow wound
up with {—0.01,0.99,0}. So that’s were the bug is, in the y component of the
new velocity, which should be v, (dt) = v, + a,dt, but somehow isn’t.

Erica: Easy to check: here is where we compute the new value of v,, which we
call vy:

vx += ax*dt
vy += ax*dt
vz += azxdt

Ooops!! A typo. How silly. No wonder we got the wrong answer for a,. Let me
correct it right away, and write it out as a new file, euler_circular _step.rb:

vx += axxdt
vy += ay*xdt
vz += az*dt

I'm curious to see whether now everything will be all right:

7.2. A DIFFERENT SURPRISE 83

|gravity> ruby euler_circular_step.rb
10 0 0 1 O
1.0 0.01 0.0 -0.01 1.0 0.0

Dan: Wonderfull Now both the position and the velocity components are
correct, after the first step. We are winning!

Carol: Yes, we have now verified that we got the right result after one step.

7.2 A Different Surprise

Dan: Great! Let’s go back to our original code, correct the bug, and we’ll be
in business.

Carol: Only if the first bug we caught will be the last bug. Don’t be so sure!
We may well have made another mistake somewhere else.

Dan: Oh, Carol, you're too pessimistic. I bet everything will be fine now!

Erica: We'll see. Here is the same typo in euler_try.rb:

vx += ax*dt
vy += ax*dt
vz += az*dt

and here is the corrected program, which I will call euler.rb in the spirit of
Dan’s optimism:

vx += ax*dt
vy += ay*dt
vz += azxdt

I’ll run the new code:

|gravity> ruby euler.rb > euler.out

And here is the plot, in fig 7.1:

|gravity> gnuplot
gnuplot> set size ratio -1
gnuplot> plot "euler.out"
gnuplot> quit

84 CHAPTER 7. DEBUGGING THE CODE

T T
"euler.out” +

Figure 7.1: Second attempt at integrating the two-body problem: a different
failure.

7.3. ONE INTEGRATION STEP: VALIDATION 85

Carol: Well, Dan, what do you say?

Dan: No comment.

7.3 One Integration Step: Validation

Erica: Maybe we should go back to the circular orbit. We tried to take a single
step there, and we found our typo. Perhaps we should take a few more steps,
before returning to the more general problem.

Carol: I agree. Let us sum up what we’ve done with our one-step code. We
have verified that our program does what the algorithm intended, and that is
certainly nice! But it is only half of the work. We now have to check whether our
particular algorithm does indeed give a reasonable result, which corresponds to
the behavior of gravitating particles in the real world. This is called validation.
In the computer science literature these two checks are often called V&V, for
Verification and Validation.

In other words, so far in our one-step program we have passed the verification
test. The computer code does exactly what we wanted it to do, at least for that
one step. But now we have to do a validation test.

Dan: What does that mean, concretely?

Carol: For example, we can ask whether the first step keeps the two particles
on a circular orbit. We can answer that question with pure thought. After the
first step, the new separation is:

r(0.1) = /22 + 32 4 22 = v/1+ 0.012 = V1.0001 ~ 1.00005 (7.8)

Dan: Instead of the correct value of r(0.01) = 1, we are half a one hundredth
of one percent off. Not bad, I would say.

Carol: Not bad for one step, perhaps, but our orbit has a radius of unity,
which means a circumference of 27 ~ 6.3. With a velocity of unity, it will take
630 steps to go around the circle, at the rate we are going. And if every step
introduces ‘only’ an error of 0.00005, and if the errors built up linearly, we wind
up with a total error of 1 + 630 % 0.00005 ~ 1.03. That is already a 3% error,
even during the first revolution! And after just a few dozen revolutions, if not
earlier, the results will be meaningless.

Dan: Good point. Of course, we don’t know whether the errors build up
linearly, but for lack of a better idea, that would be the first guess. Perhaps
we should take an even smaller time step. What would happen if we would use
dt = 0.0017 Let’s repeat your analysis. After one step, we would have

7(0.001) = /22 4+ 2 + 22 = /1 4 0.0012 = v/1.000001 ~ 1.0000005 (7.9)

86 CHAPTER 7. DEBUGGING THE CODE

We now need roughly 6300 steps to go around the circle, If the errors build up
linearly, the radial separation will grow to something like 1+ 6300 0.0000005 =
1.003. Aha! Only a 0.3% error, instead of 3%.

Erica: Bravo! You have just proved that the forward Euler scheme is a first-
order scheme! Remember our discussion at the start? For a first-order scheme,
the errors scale like the first power of the time step. You just showed that
taking a time step that is ten times smaller leads to a ten times smaller error
after completing one revolution.

Dan: Great! I thought that numerical analysis was a lot harder.

Carol: Believe me, it is a lot harder for any numerical integration scheme that
is more complex than first-order. You'll see!

Dan: I can wait. For now I'm happy to work with a scheme which I can
completely understand.

7.4 More Integration Steps

Carol: So were are we. To sum up: we have verified that our simple one-step
code euler_circular_step.rb does exactly what we want it to do. And we
have validated that what we want it to do is reasonable: for smaller and smaller
time steps the orbit should stay closer and closer to the true circular orbit.

Dan: That’s the good news. But at the same time, that’s also the bad news!
When we tried to integrate an arbitrary elliptical orbit, we got a nonsense
picture. How come?

Erica: We’ll have to work our way up to the more complicated situation. Let
us stick to the circular orbit for now. We have a basis to start from: the first
step was correct, that we know for sure. Let’s do a few more steps.

Dan: Let’s try a thousand steps again.

Carol: Better to do ten steps. Each time we tried to jump forward too quickly
we’ve run into problems!

Erica: How about a hundred steps, as a compromise? Let’s go back to the very
first code we wrote, but now for a circular orbit, and for an integration of one
time unit, which will give us a hundred steps.

Carol: Let’s keep the old code, for comparison. Here is the new one. I will call
it euler_circular_100_steps.rb:

include Math

<
I

7.4. MORE INTEGRATION STEPS 87

vx = 0

vy =1

vz = 0

dt = 0.01

pI'iIlt(X, n n’ v, n u’ z, n ||)
print(vx, n ||, vy, n Il, vz, ll\nll)
100.timesq{

r2 = x*x + y*y + zxz
r3 = r2 x sqrt(r2)

ax = - x / r3
ay = -y / r3
az = -z / r3
x += vx*xdt
y += vy*dt

z += vz*xdt
vx += ax*dt

vy += ay*dt

vz += az*dt

pI‘lIlt (X, n n , y’ n n s z’ n Il)
pI‘lIlt (VX, n n vy, n n , VZ, n \nll)

Dan: If you keep making the names longer and longer, they won’t fit on a single
line anymore!

Carol: You do what you want and I do what I want; I just happen to sit behind
the keyboard.

Erica: Peace, peace! Let’s not fight about names; we can later make copies
with shorter names as much as we like.

|gravity> ruby euler_circular_100_steps.rb > euler_circular_100_steps.out

Carol: Figure 7.2 may or may not be part of a good circle; hard to see when
you only have a small slice.

Dan: Told you so!

Carol: No, you didn’t! You didn’t give any reason for returning to the old
value.

Erica: Hey guys, don’t get cranky. Let’s just go back to our original choice of
1,000 steps.

88

CHAPTER 7.

DEBUGGING THE CODE

0.9

08 [

T T T T T T T
"euler_circular_100_steps.out”

T
+

0.7
0.6 [

05 |

0.4
03 |
0.2

0.1

0

| | E
0.50.550.60.650.70.750.80.850.90.95 1

Figure 7.2: Third attempt at integrating the two-body problem: part of a circle?

7.5. EVEN MORE INTEGRATION STEPS 89

7.5 Even More Integration Steps

Carol: In that case, let’s make yet another new file . . . Dan, close your eyes,
I’'m adding one more character to the file name . . . euler_circular_1000_steps.rb:

include Math

x =1
y =

z =0
VX =
vy =
vz =
dt =

O O~ O

.01

ll, y’ n ll, Z, n ll)

, VY, , vz, "\n")

print(x, "
print(vx, "

1000.timesq{
r2 = x*x + y*y + zxz
r3 = r2 x sqrt(r2)

ax = - x / r3
ay = -y / r3
az = -z / r3
x += vx*xdt
y += vy*dt

z += vz*xdt
vx += ax*dt

vy += ay*dt

vz += azxdt

print (X s n n , y s n n s z s n Il)
print(vx, n ||’ vy, n ||, vz, n\nu)

And here is our new result, which I'm calling figure 7.3:

|gravity> ruby euler_circular_1000_steps.rb > euler_circular_1000_steps.out

Much better!
Erica: Indeed, we're really make progress.

Dan: We’ve come around full circle — almost! At least the particles are trying
to orbit each other in a circle, it seems. They're just making many small errors,
that are piling up.

90

Figure 7.3: Fourth attempt at integrating the two-body problem

better.

0.5

-0.5

CHAPTER 7. DEBUGGING THE CODE

"eule'rfcircularj 60073teps.odt"

: looking much

7.6. PRINTING PLOTS 91
7.6 Printing Plots

Erica: Now that we're getting somewhat believable results, I would like to make
some printouts of our best pictures. Carol, how do you get gnuplot to make
some prints?

Carol: That’s easy, once you know how to do it, but it is rather non-intuitive.
The easiest way to find out how to do this is to go into gnuplot and then to
type help, and to work your way down the information about options. To give
you a hint, set terminal and set output. Of course, if you use gnuplot for
the first time, you would have no way of guessing that those are the keywords
you have to ask help for.

Erica: That’s a general problem with software. Having a help facility is a good
start, but I often find that I need a meta-help facility to find out how to find
out how to ask the right questions to the help facility. In any case, I'm happy
to explore gnuplot more, some day, but just for now, why don’t you make a
printout of the last figure we have just produced.

Carol: Okay, here is how it goes. I'm using abbreviations such as post for
postscript and q for quit:

|gravity> gnuplot

gnuplot> plot "euler_circular_1000_steps.out"

gnuplot> set term post eps

Terminal type set to ’postscript’

Options are ’eps noenhanced monochrome dashed defaultplex "Helvetica" 14’
gnuplot> set output "euler_circular_1000_steps.ps"

gnuplot> replot

gnuplot> q

Let’s print out this plot:
|gravity> lpr euler_circular_1000_steps.ps

Erica: Great, same figure. But hey, wait a minute, the symbol used for the
points in the printed figure is very different from the symbol that appeared on
the screen!

Carol: Welcome to the wonderful world of gnuplot. This is a strange quirk
which is one of the things I really don’t like about it. But as long as we use
gnuplot, we have to live with it.

92

CHAPTER 7.

DEBUGGING THE CODE

Chapter 8

Convergence for a Circular

Orbit

8.1

Better Numbers

Carol: Yes, the orbit is looking recognizably circular, but that’s about it. The
errors are still quite large. I would like to know exactly how large they are. Let
me have a peak at the numbers at the beginning and at the end of the run, just
like we did in the elliptic case.

|gravity> ruby euler_circular_1000_steps.rb > euler_circular_1000_steps.out
|gravity> head -5 euler_circular_1000_steps.out

1 0 0 01 O
1.0 0.01 0.0
0.9999 0.02 0.0

-0.01
-0.0199985001874781

1.0 0.0

0.999700014998125 0.0299990001499813 0.0
0.999400069987252 0.0399960008998425 0.0

|gravity> tail -5 euler_circular_1000_steps.
0.

-0.967912821753728
-0.973256517334714
-0.978538241892268
-0.983757698377457
-0.988914594251659

0.639773430828751
0.632128716824802
0.624443041059234
0.616716922269671
0.608950881138291

O O O O

0

O O O O

0.999900014998125 0.0
-0.0299945010873182 0.
.9994002199565 0.

-0.0399870033746211
out
-0.534369558098563
-0.528172455755398
-0.521945648518888
-0.515689587420237
-0.509404724445418

0

Erica: The first few numbers give a distance of about 1 for the separation of
the two particles, as it should be, but the last few numbers are too large. The
separation along the z axis is about 1.0, and the separation along the y axis is
about 0.6, and with Pythagoras that gives us a distance of v/1-1+0.6-0.6 =

1.17. Not wildly off, but not very good either.

93

999700074986127

.764471400394899
.768567576556818
.772611878956261
.776604113138075
.780544088761249

o O

o O O O O
O O O O O

94 CHAPTER 8. CONVERGENCE FOR A CIRCULAR ORBIT

Carol: Remember, just after Eq.(7.8), how I estimated the error after one orbit
to be 3%? After one and a third orbit it should then have been 4%, and we got
17%. Perhaps nonlinear effects contributed, but at least my original guess of
several percent was not way off! And I remember that Dan showed what should
happen for a time step that is ten times smaller: the error should shrink by a
factor ten as well. I'd like to test that, by changing the line:

dt = 0.01

in euler_circular_1000_steps.rb to:

dt = 0.001

and put that code in euler_circular_10000_steps.rb, to indicate that we are
now taking 1,000 steps per time unit, 10,000 time steps in total. Time to run
it!

|gravity> ruby euler_circular_10000_steps.rb > euler_circular_10000_steps.out
|gravity> head -5 euler_circular_10000_steps.out

10 0 0 1 O

1.0 0.001 0.0 -0.001 1.0 0.0

0.999999 0.002 0.0 -0.00199999850000188 0.9999990000015 0.0

0.9999970000015 0.0029999990000015 0.0 -0.00299999450001088 0.9999970000075 O
0.999994000007 0.003999996000009 0.0 -0.00399998700003375 0.999994000022 0.0
|gravity> tail -5 euler_circular_10000_steps.out

0.544161847963306 0.839852844602723 0.0 -0.839087845804416 0.544480032616632
0.543322760117501 .840397324635339 0.0 -0.839630814109985 0.54364202187099 O
0.542483129303391 .84094096665721 0.0 -0.840172943245668 0.542803470813169 O
0.541642956360146 .841483770128023 0.0 -0.840714232673602 0.541964380286331
0.540802242127472 .84202573450831 0.0 -0.841254681856773 0.541124751134179 0

O O O O

Dan: Those numbers are very different from the earlier ones . . .

8.2 Even Better Numbers

Erica: Ah, but of course! To come back to the same place, after making the
time step ten times smaller, we have to take ten times as many steps!

Carol: Of course indeed! Okay, I’ll change the line

1000.times{

8.3. AN EVEN BETTER ORBIT 95

in euler_circular_10000_steps.rb to:

10000.timesq{

and call that file euler_circular_10000_steps_ok.rb.

Dan: Your file names are growing again without bounds, and I don’t like having
so very many different files lying around.

Carol: As long as we’re debugging, I'd prefer to have many files, so that we
can always backtrack to earlier versions. We can clean up the mess later.

Dan: Okay, try again:

|gravity> ruby euler_circular_10000_steps_ok.rb > euler_circular_10000_steps_ok.out
|gravity> head -5 euler_circular_10000_steps_ok.out

1 0 0 0 1 0

1.0 0.001 0.0 -0.001 1.0 0.0

0.999999 0.002 0.0 -0.00199999850000188 0.9999990000015 0.0

0.9999970000015 0.0029999990000015 0.0 -0.00299999450001088 0.9999970000075 0.0
0.999994000007 0.003999996000009 0.0 -0.00399998700003375 0.999994000022 0.0
|gravity> tail -5 euler_circular_10000_steps_ok.out

-0.926888921537776 -0.42643167863865 0.0 0.411096610555956 -0.900278962470303 0.0

0.411969325107482 -0.899877454670898 O.

-0.92647782492722 -0.42733195760112 O. .4
0.412841644152271 -0.899475103103453
0
0

0
-0.926065855602113 -0.428231835055791 0.0
-0.9256653013957961 -0.429131310158894 0.0
-0.925239300391083 -0.430030382067056 0.0

.413713566877832 -0.899071908161608
.414585092472074 -0.898667870239779

Dan: Great! Time for Pythagoras again: +/0.925-0.925 + 0.430 - 0.430
1.020.

Carol: A 2% error, about a factor ten smaller than the 17% error we had before.
We're getting there!

Q

8.3 An Even Better Orbit

Erica: And we should get a much better picture now.
Carol: Here it is, fig. 8.1.
Erica: Wonderful! You can hardly see the deviation from a circle.

Dan: Yes, the particles almost cover their own tracks, the second time around.

0

0.
0.
0.

O O O

96 CHAPTER 8. CONVERGENCE FOR A CIRCULAR ORBIT

' "eulerfcir(;ularj0000lstepsfok.odt" +

0.5 | .

-0.5 E

Figure 8.1: Fifth attempt at integrating the two-body problem: looking even
better.

8.4. REASONS FOR FAILURE 97

Carol: You mean the particle: we're integrating a one-body problem.

Dan: Well, the distance between the two particles is what is plotted, so I feel
I can talk about particles.

Erica: And I think you're both right. Stop arguing, you guys! Let’s go back to
the elliptic case, the one we started with, remember?

8.4 Reasons for Failure

Carol: Sure, I remember that. All we have to do is to take the file euler_circular.rb
and make the initial velocity half as large, by changing the line:

vy =1
into:
vy = 0.5

Dan: But that will be the same file as we started with, euler.rb.

Carol: Ah, yes, of course, I had forgotten already. And in that case, the orbit
exploded.

Dan: Let’s see it again. Now that we seem to understand the circular case,
perhaps we can figure out what went wrong in the elliptic case.

Carol: Okay, here we go again:

|gravity> ruby euler.rb > euler.out

And here is the plot once more, in fig 8.2:

Erica: Let us take a moment to evaluate what we have learned. We know now
how small the steps have to be to get a reasonable convergence for a circular
orbit. And we can see in figure 8.2 that the steps get far larger toward the left
of the figure.

In fact, even when the steps start off with a reasonably small size at the right
hand side, by the time we have reached the left, the steps are so large that even
a circular orbit would not reach convergence if we would everywhere use such
large steps!

Dan: Why do the steps get so large, all of a sudden?

98 CHAPTER 8. CONVERGENCE FOR A CIRCULAR ORBIT

T T
"euler.out" +

Figure 8.2: A rerun of the second attempt at integrating the two-body problem.

8.5. SIGNS OF HOPE 99

0.6

"euler_elliptic_10000_steps.out’ +

04 | R

02| 4

02| 1

04 | -

0.6 L L L L
-0.5 0 0.5 1 15 2 25

Figure 8.3: Sixth attempt at integrating the two-body problem: signs of hope.

Erica: Because the particles get very close together. Notice that the left-most
part of the orbit is also the point in the orbit that is closest to the origin, the
place where x = y = 0. This is called the pericenter of an elliptic orbit. This
word is derived from the Greek wepe(peri) meaning ‘around’ or ‘near’.

You see, we started off with a speed smaller than the speed required for a
circular orbit, in fact, we had only have of that speed. So the particles started
to fall toward each other right away, and IF we would have computed the orbit
correctly, the two particles would have returned to the exact same spot after
one revolution, just as we finally managed to see in the circular case when we
took very small steps.

Carol: So the initial position is then the place in the orbit where the particles
are furthest away from each other?

Erica: Yes, indeed! And that point is called the apocenter, from the Greek amwo
(apo) meaning ‘far (away) from’. Well, I am willing to bet that a smaller time
step will cure all of our problems.

Dan: Seeing is believing. Can you show us, Carol?
8.5 Signs of Hope

Carol: Here we go, a ten times smaller step size in euler_elliptic_10000_steps.rb;
I’ll plot the result in fig. 8.3.

|gravity> ruby euler_elliptic_10000_steps.rb > euler_elliptic_10000_steps.out

Dan: I must admit, you may both have been right: at least now the particles
are completing a couple orbits that sort-of look elliptical, even though the errors
are still large. But at least they don’t fly off to infinity like in a slingshot.

100 CHAPTER 8. CONVERGENCE FOR A CIRCULAR ORBIT

Erica: Yes, I think we're getting to the bottom of all this, finally.
Dan: But we’d better make sure, and use even smaller steps.

Carol: Will do!

Chapter 9

Convergence for an Elliptic
Orbit

9.1 Adding a Counter

Carol: Yes, let’s go to smaller steps, but I'm worried about one thing, though.
Each time we make the steps ten times as small, we are generating ten times
more output. This means a ten times larger output file, and ten times more
points to load into our graphics figure. Something tells me that we may have to
make the steps a hundred times smaller yet, to get reasonable convergence, and
at some point we will be running into trouble when we start saving millions of
points.

Let’s check the file size so far:

|gravity> 1s -1 euler_elliptic_10000_steps.out
-IW-r--r-- 1 makino makino 854128 Sep 14 08:21 euler_elliptic_10000_steps.out

Dan: I see, almost a Megabyte. This means that a thousand times smaller step
size would generate a file of almost a Gigabyte. That would be overkill and
probably take quite a while to plot. I guess we’ll have to prune the output, and
only keep some of the points.

Erica: Good idea. A natural approach would be to keep the same number of
points as we got in our first attempt, namely one thousand. In our next-to-
last plot, figure 8.2 you could still see how the individual points were separated
further from each other at the left hand side, while in our last plot, figure 8.3,
everything is so crowded that you can’t see what is going on.

Dan: What do you mean with ‘going on’?

101

102 CHAPTER 9. CONVERGENCE FOR AN ELLIPTIC ORBIT

Erica: In figure 8.2, on the left hand side, you can see that the individual points
are separated most when the particles come close together. This means that
the particles are moving at the highest speed, which makes sense: when two
particles fall toward each other, they speed up. As long as we stick to only a
few hundred points per orbit, we will be able to see that effect nicely also when
we reach convergence in more accurate calculations.

Carol: Isee. That makes sense. I'd like to aks you more about that, but before
doing so, let’s first get the pruning job done, in order to produce more sparse
output. I will take our last code, from euler elliptic_10000_steps.rb, and
call it euler_elliptic_10000_steps_sparse.rb instead. Yes, Dan, you can
later copy it into eels.rb, if you like. How to prune things? We have a
time step of dt = 0.001 that is ten times smaller than our original choice, and
therefore it produces ten times too many points.

The solution is to plot only one out of ten points. The simplest way I can think
of is to introduce a counter in our loop, which keeps track of how many times
we have traversed the loop. I will call the counter i:

10000.times{ |1/

Erica: what do the vertical bars mean?

Carol: That is how Ruby allows you to use a counter. In most languages, you
start with a counter, and then you define the looping mechanism explicitly by
using the counter. For example, in C you write

for (i = 0; i < imax; i++){ ... }

which defines a loop that is traversed imax times. Ruby is cleaner, in the sense
that it allows you to forget about such implementation details. The construct

imax.times{ ... }

neatly takes care of everything, while hiding the actual counting procedure.
However, if you like to make the counter visible, you can do so by writing;:

imax.times{|i] ... }

where i, or whatever name you like to choose for the variable, will become the
explicit counter.

9.2. SPARSE OUTPUT 103

9.2 Sparse Output

Dan: So now we have to give the print statements a test which is passed only
one out of ten times.

Carol: Exactly. How about this?

if i%10 == 0
print(x, " ", y, " ", =z, " ")
print(vx, " ", vy, " ", vz, "\n")
end

Here the symbol % gives you the reminder after a division, just as in C.
Dan: So when you write 8%3, you get 2.

Carol: Yes. And the way I wrote it above, 1%10, will be equal to zero only one
out of ten times, only when the number i is a multiple of ten, or in decimal
notation ends in a zero.

Dan: Okay, that’s hard to argue with. Let’s try it. Better make sure that you
land on the same last point as before. How about running the old code and the
new sparse code, and comparing the last few lines?

Carol: Good idea. After our debugging sessions you've gotten a taste for
testing, hey? You'll turn into a computer scientist before you know it! T'll give
you what you ordered, but of course there is hardly anything that can go wrong:

|gravity> ruby euler_elliptic_10000_steps.rb | tail -3

2.01466014781365 0.162047884550843 0.0 -0.152387493429476 0.258735730522888
2.01450776032022 0.162306620281366 0.0 -0.152631496539003 0.258716104290758
2.01435512882368 0.162565336385657 0.0 -0.152875528688122 0.258696442895482

|gravity> ruby euler_elliptic_10000_steps_sparse.rb | tail -3

O O O
o O O

2.018682481674 0.155054729139203 0.0 -0.145810200248145 0.259252408016603 0.0
2.01721343061819 0.157646408310245 0.0 -0.14824383417573 0.259064012737983 0.0

2.01572003060918 0.160236187852851 0.0 -0.150680280478263 0.258872130993741

Dan: Well, hardly anything perhaps, but still something went wrong . . .

Carol: . . . yes, I spoke too soon. The points do some to be further separated
from each other, but the last point from the new code doesn’t quite reach the
last of the many points that the old code printed.

Ah, of course! I should have thought about that. Off by one!

0.0

104 CHAPTER 9. CONVERGENCE FOR AN ELLIPTIC ORBIT

Erica: Off by one?

Carol: Yes, that’s what we call it when you forget that Ruby, or C for that
matter, is counting things starting from zero rather than from one. The first
time we traverse the loop, the value of i is zero, the second time it is one. We
want to print out the results one out of ten times. This means that each time
we have traversed the loop ten times, we print. After the tenth traversal, i =
9, since we started with i = 0. Here, I'll make the change, and call the file
euler_elliptic_10000_steps_sparse_ok.rb:

if i%10 ==
print(x, " ", y, " ", z, " ")
print(vx, " ", vy, " ", vz, "\n")
end

Let me try again:

|gravity> ruby euler_elliptic_10000_steps.rb | tail -3

2.01466014781365 0.162047884550843 0.0 -0.152387493429476 0.258735730522888
2.01450776032022 0.162306620281366 0.0 -0.152631496539003 0.258716104290758
2.01435512882368 0.162565336385657 0.0 -0.152875528688122 0.258696442895482

|gravity> ruby euler_elliptic_10000_steps_sparse_ok.rb | tail -3

2.01736143096325 0.157387325301357 0.0 -0.148000345061228 0.259083008888045
2.01587046711702 0.159977296376325 0.0 -0.150436507846502 0.258891476525706
2.01435512882368 0.162565336385657 0.0 -0.152875528688122 0.258696442895482

Dan: Congratulations! I guess this is called off by zero? The last points are
indeed identical.

Erica: I'd call it on target. And presumably the output file is ten times smaller?

Carol: Easy to check:

|gravity> ruby euler_elliptic_10000_steps.rb | wc
10001 60006 854128

|gravity> ruby euler_elliptic_10000_steps_sparse_ok.rb | wc
1001 6006 85445

So it is; from more than 10,000 lines back to 1001 lines, as before.

(@)

(@)

9.3. BETTER AND BETTER 105
9.3 Better and Better

Dan: Resulting in a sparser figure, I hope?

Carol: That’s the idea!

|gravity> ruby euler_elliptic_10000_steps_sparse_ok.rb > euler_elliptic_10000_steps_sparse_ol

Here is the plot, in fig. 9.1.
Erica: And yes, you can again see the individual steps on the left-hand side.

Carol: It will be easy now to take shorter and shorter steps. Starting from
euler_elliptic_10000_steps_sparse_ok.rb, which we used before, I'll make a
file euler_elliptic_100000_steps_sparse_ok.rb, with only two lines different:
the dt value and the if statement:

dt = 0.0001

if i%100 == 99

print (X, n n s Vs n n . Z, n II)
print (VX, n n s Vy, " n , VZ, Il\nll)
end

Similarly, in ruby euler_elliptic_1000000_steps_sparse_ok.rb we have

dt = 0.00001

if i%1000 == 999

pI'iIlt (X, n n , Y n n . Z, n ||)
print (VX, " " , VY, n n , VZ, "\Il")
end

T’ll run the codes and show the plots, in fig. 9.2 and fig. 9.3, respectively.

|gravity> ruby euler_elliptic_100000_steps_sparse_ok.rb > euler_elliptic_100000_steps_sparse.

|gravity> ruby euler_elliptic_1000000_steps_sparse_ok.rb > euler_elliptic_1000000_steps_spar:

106 CHAPTER 9. CONVERGENCE FOR AN ELLIPTIC ORBIT

0.6
"eL‘JIeLeIIiplicJOOObfstepsfsparse!ok.out" +
04

0.2 -

-02 |

04 F

-0.6
-0.5

2 25

Figure 9.1: Seventh attempt at integrating the two-body problem: sparse output

0.5
”eulerfellip{icj0000075te‘psfsparsefok.‘out" +
04
03

02|

0.1 |

-01
-02 |

-03 -

04 F

05 L L L L L L

Figure 9.2: Eighth attempt at integrating the two-body problem: starting to
converge.

9.4. A PRINT METHOD 107

000000_steps_sparse_ok.out” +

o
T
T
e -
Rk ey
o ",

-0.2

-03

0.4 L L L L L
-0.2 0 0.2 0.4 0.6 0.8 1 12

Figure 9.3: Ninth attempt at integrating the two-body problem: finally con-
verging.

9.4 A Print Method

Dan: Beautiful. A real ellipse! Newton would have been delighted to see this.
The poor guy; he had to do everything by hand.

Carol: But at least he was not spending time debugging . . .
Erica: . . . or answering email. Those were the days!

Dan: I’'m not completely clear about the asymmetry in the final figure. At the
left, the points are much further apart. Because all points are equally spaced in
time, this means that the motion is much faster, right?

Erica: Right! Remember, what is plotted is the one-body system that stands
in for the solution of the two-body problem.

Carol: You know, I would find it really helpful if we could plot the orbits of
both particles separately. So far, it has made our life easier to use the {R,r}
coordinates, since we could choose the c.0o.m. coordinate system in which {R =
0} by definition, so we only had to plot {r}. But how about going back to our
original coordinate system, plotting the full {rl,r2} coordinates, one for each
particle separately?

Erica: That can’t be hard. We just have to look at the summary we wrote of
our derivations, where was that, ah yes, Eq. (4.18) is what we need.

Dan: And we derived those in Egs. (4.4) and (4.6), because Carol insisted we
do so.

Carol: I'm glad I did! You see, it often pays off, if you're curious. Pure science
quickly leads to applied science.

108 CHAPTER 9. CONVERGENCE FOR AN ELLIPTIC ORBIT

Dan: You always have such a grandiose way to put yourself on the map! But
in this case you're right, we do have an application. Now how do we do this .

. oh, it’s easy really: we can just plot the positions of both particles, in any
order we like. As long as we plot all the points, the orbits will show up in the
end.

Erica: And it is most natural to plot the position of each particle in turn, while
traversing the loop once. All we have to do is to make the print statements a
bit more complicated.

Carol: But I don’t like to do that twice, once before we enter the loop, and
once inside the loop, toward the end. It’s high time to define a method.

Dan: What’s a method?

Carol: It’s what is called a function in C or a subroutine in Fortran, a piece of
code that can be called from elsewhere, perhaps using some arguments. Here,
I'll show you. When you improve a code, rule number one is: try not to break
what already works. This means: be careful, take it one step at a time.

In our case, this means: before trying to go to a new coordinate system, let us
first implement the method idea in the old code, then check that the old code
still gives the right result, and only then try to change coordinate systems.

So far, we have solved the one-body system, using the computer program
in euler_elliptic_1000000_steps_sparse_ok.rb. [I'll copy it to a new file
euler_one _body.rb. Now I'm going to wrap the print statements for the one-
body system into a method called print1:

def printi(x,y,z,vx,vy,vz)

pI‘iIlt (X, n n s y’ n n s Z, n ll)
print (VX, n n , VY, n n , VZ, n \Il")
end

and I will invoke this method once at the beginning, just before entering the
loop:

printl(x,y,z,vx,vy,vz)
1000000.times{|il|

and once at the end of each loop traversal:

printi(x,y,z,vx,vy,vz) if 1i%1000 == 999

Dan: Wait a minute, shouldn’t the if statement come in front?

Carol: in most languages, yes, but in Ruby you instead of writing:

9.4. A PRINT METHOD 109

T T
"euler_one_body.out” +

-0.2

-03

0.4 L 1 1 i 1 1

Figure 9.4: Tenth attempt at integrating the two-body problem: check of 1-body
output.

if a
b
end
you can also write

b if a

if everything fits on one line, and then the end can be omitted.

Well, now this new code should give the same results as we had before:

|gravity> ruby euler_one_body.rb > euler_one_body.out

Erica: Sure looks the same.

Dan: If you really want to show that it’s the same, why not print the last lines
in each case?

Carol: Right, let’s check that too:

|gravity> ruby euler_elliptic_1000000_steps_sparse_ok.rb | tail -3
0.496147378042769 -0.37881858244996 0.0 1.21129218162732 0.0849254022743251

0.0

0.508159065963217 -0.377892709335516 0.0 1.19108982655975 0.100148843547868 0.0
0.519970642634004 -0.376817992041834 0.0 1.17126787143698 0.114700879739653 0.0

|gravity> ruby euler_one_body.rb | tail -3

110 CHAPTER 9. CONVERGENCE FOR AN ELLIPTIC ORBIT

0.496147378042769 -0.37881858244996 0.0 1.21129218162732 0.0849254022743251
0.508159065963217 -0.377892709335516 0.0 1.19108982655975 0.100148843547868
0.519970642634004 -0.376817992041834 0.0 1.17126787143698 0.114700879739653

Dan: I'm happy. So now you’re going to copy the code of euler_one_body.rb
to a new file called euler_two_body.rb . . .

9.5 From One Body to Two Bodies

Carol: You're reading my mind. All T have to do now is implement Eq. (4.18),
and its time derivative, where positions are replaced by velocities:

def print2(ml,m2,x,y,z,vx,vy,vz)
mfracl = m1/(m1+m2)
mfrac2 = m2/(mi1+m2)

print(-mfrac2*x, " ", -mfrac2*y, " ", -mfrac2xz, " ")
print (-mfrac2*vx, " ", -mfrac2*vy, " ", -mfrac2*vz, "\n")
print (mfracl*x, " ", mfraclxy, " ", mfraclxz, " ")
print (mfraclxvx, " ", mfracl*vy, " ", mfracl*vz, "\n")

end

Dan: And change print1 to print2.

Carol: Yes, that plus the fact that I now have to give two extra arguments, m1
and m2. In front of the loop this becomes:

print2(ml,m2,x,y,z,vX,Vy,vz)
1000000.times{|il|

and at the end inside the loop:

print2(mi,m2,x,y,z,vx,vy,vz) if i%1000 == 999

Erica: But . . . don’t we have to specify somewhere what the two masses are?

Carol: Oops! Good point. So far we've been working in a system of units in
which My + M = 1, and in the c.o.m. coordinates we never had to specify what
each mass value was. But now we’d better write the mass values in the initial
conditions.

(@)

9.5. FROM ONE BODY TO TWO BODIES 111

Erica: And for consistency, we should insist that the sum of the masses remains
unity, so we only have one value that we can freely choose. For example, once
we choose a value for m1, the value for m2 is fixed to bem2 = 1 - mi.

Carol: That’s easy to add. How about making the masses somewhat unequal,
but not hugely so? That way we can still hope to see both orbits clearly. I'll
make m1 = 0.6:

mil 0.6
m2 =1 - ml

Dan: Given that we use the convention M; + Ms = 1, there is really no need
to divide by this quantity, in the method print2. In fact, there was no reason
to introduce the variables mfracl and mfrac?2 for the mass fractions that were
assigned to each star. With the total mass being unity, the mass fraction in
each star has exactly the same value as the mass of each star itself.

Erica: Yes, that is true. However, I prefer to keep print2 the way it is, just
to make the physics clear. When you write mfracl*vx, it is clear that you are
dealing with a velocity, vx, that is multiplied by a mass fraction. If you were
to write simply m1*vx, you would get the same numerical value, but the casual
reader would get the impression that you are now working with a momentum,
rather than a velocity.

Carol: I agree. I can see Dan’s argument for writing a shorter and minimal
version of print2, but I, too, prefer the longer version, for clarity.

Dan: Okay, I can see the point, though I myself would prefer brevity over clarity
in this case. But since I'm outvoted here, let’s leave it as it is. Can you show
the whole program? I'm beginning to loose track now.

Carol: Here it is:

include Math

x =1
y:
z =0
vx = 0
vy = 0
vz = 0
dt = 0.00001
ml = 0.6
m2 =1 - ml

def print2(ml,m2,x,y,z,vx,vy,vz)

112 CHAPTER 9. CONVERGENCE FOR AN ELLIPTIC ORBIT

mfracl = m1/(m1+m2)
mfrac2 = m2/(m1+m2)
print(-mfrac2xx, " ", -mfrac2*y, " ", -mfrac2xz, " ")

, —-mfrac2*vz, "\n")
, mfracl*xz, " ")
" v mfraclxvz, "\a")

print (-mfrac2*vx,

print (mfraclixx, " "

print (mfracl*vx,
end

, —mfrac2x*vy,
, mfraclxy, " "
" ", mfraclx*vy,

print2(ml,m2,x,y,z,vx,vy,vz)
1000000.times{|il

r2 = x*x + y*y + z*z

r3 = r2 x sqrt(r2)

ax = - x / r3
ay = -y / r3
az = -z / r3
x += vx*xdt
y += vy*dt

z += vz*xdt
vx += axxdt
vy += ay*dt
vz += az*xdt
print2(ml,m2,x,y,z,vx,vy,vz) if i%1000 == 999

And here is the output:

|gravity> ruby euler_two_body.rb > euler_two_body.out

And the results are plotted in fig. 9.5
Erica: Beautiful!

Dan: Indeed. That makes everything a lot more concrete for me. So the bigger
ellipse belongs to the particle with the smaller mass, m2, and the smaller ellipse
is for the bigger one, m1.

Erica: And they always face each other from different sides with respect to the
origin, {z,y} = {0,0}.
Carol: For now, I take your word for it, but it sure would be nice to see all

that actually happening. I mean, it would be great to see the particles orbiting
each other in a movie.

Erica: Definitely. But before we go into that, I suggest we move up one step,
from the first-order forward Euler algorithm to a second-order algorithm. Look,
we’re now using a whopping one million steps just to go around a simple ellipse
a few times. Clearly, forward Euler is very inefficient.

9.5. FROM ONE BODY TO TWO BODIES 113

0.25

02 | y Llwoibcdy.‘out" +
0.15 |- q
0.1 1
0.05 | 4
0 4
-0.05 | 4
-0.1 4
-0.15 | 4
-02 4
-0.25 L
-0.6 0.4 0.2 0 0.2 0.4 0.6 0.8

Figure 9.5: Eleventh attempt at integrating the two-body problem: check of
2-body output.

Dan: I've been wondering about that. I agree. Let’s get a better scheme first,
but then it will be time to see a movie.

114 CHAPTER 9. CONVERGENCE FOR AN ELLIPTIC ORBIT

Chapter 10

The Modified Euler
Algorithm

10.1 A Wild Idea

Dan: Well, Erica, how are we going to move up to a more accurate algorithm?
Carol: You mentioned something about a second-order scheme.

Erica: Yes, and there are several different choices. With our first-order ap-
proach, we had little choice. Forward Euler was the obvious one: just follow
your nose, the way it is pointed at the beginning of the step, as in fig. 5.1.

Dan: You mentioned a backward Euler as well, and even drew a picture, in in
fig. 5.2.

Erica: That was only because you asked me about it! And the backward Euler
scheme is not an explicit method. It is an implicit method, where you have to
know the answer before give calculate it. As we discussed, you can solve that
through iteration; but in that case you have to redo every step at least one more
time, so you spend a lot more computer time and you still only have a first-order
method, so there is really no good reason to use that method.

Carol: But wait a minute, the two types of errors in figs. 5.1 and 5.2 are clearly
going in the opposite directions. I mean, forward flies out of the curve one way,
and backward spirals in the other way. I wonder, can’t you somehow combine
the two methods and see whether we can let the two errors cancel each other?

If we combine the previous two pictures, the most natural thing would be to try
both of the Euler types, forward and backward. Here is a sketch, in fig. 17.2.
The top arrow is what we’ve done so far, forward Euler, simply following the
tangent line of the curve. The bottom line is backward Euler, taking a step that
lands on a curve with the right tangent at the end. My idea is to compute both,

115

116 CHAPTER 10. THE MODIFIED EULER ALGORITHM

Figure 10.1: An attempt to improve the Euler methods. The top arrow shows
forward Euler, and the bottom arrow backward Euler. The dashed arrow shows
the average between the two, which clearly gives a better approximation to the
curved lines that show the true solutions to the differential equation.

and then take the average between the two attempts. I'm sure that would give
a better approximation!

Dan: But at a large cost! The backward Euler method is an implicit method,
as Erica mentioned, that requires at least one extra iteration. So the bottom
arrow alone is much more expensive to compute than the top arrow, and we
have to compute both.

Carol: It was just a wild idea, and it may not be useful.

10.2 Backward and Forward

Erica: Actually, I like Carol’s idea. In reminds me of one of the second order
schemes that I learned in class. Let me just check my notes.

Aha, T found it. There is an algorithm called ”Modified Euler”, which starts
with the forward Euler idea, and then modifies it to improve the accuracy, from

first order to second order. And it seems rather similar to what Carol just
sketched.

Carol: In that case, how about trying to reconstruct it for ourselves. That is
more fun than copying the algorithm from a book.

Now let’s see. We want to compute the dashed line in figure 17.2. How about
shifting the arrow of the backward step to the end of the arrow of the forward
step, as in fig. 10.27 Or to be precise, how about just taking two forward Euler
steps, one after the other? The second forward step will not produce exactly
the same arrow as the first backward step, but it will be almost the same arrow,
and perhaps such an approximation would be good enough.

Dan: But how are you going to use that to construct the dashed line in fig.
17.27

10.3. ON SHAKY GROUND 117

)

Figure 10.2: Two successive forward Euler steps.

)

Figure 10.3: A forward Euler steps and a backward Euler step, landing at the
same point.

Carol: How about shifting the second arrow back, in fig. 10.2, so that the end
of the arrow falls on the same point as the end of the first arrow? In that way,
we have constructed a backward Euler step that lands on the same point where
our forward Euler step landed, as you can see in fig. 10.3.

As T already admitted, the top arrow in fig. 10.3 is not exactly the same arrow
as the bottom arrow in fig. 17.2, but the two arrows are approximately the
same, especially if our step sizes are not too large. So, in a first approximation,
we can average the arrows in fig. 10.3. This will make Carol happy: no more
implicit steps. We have only taken forward steps, even though we recycle the
second one by interpreting it as a backward step.

The simplest way to construct the average between the two vectors is by adding
them and then dividing the length by two. Here it is, in fig. 17.1.

10.3 On Shaky Ground

Dan: I don’t believe it. Or what I really mean is: I cannot yet believe that this

118 CHAPTER 10. THE MODIFIED EULER ALGORITHM

Figure 10.4: The new integration scheme produces the dashed arrow, as exactly
one-half of the some of the two fully drawn arrows; the dotted arrow has the
same length as the dashed arrow. This result is approximately the same as the
dashed arrow in fig. 17.2.

is really correct, because I don’t see any proof for it. You are waving your arms
and you just hope for the best. Let’s be a bit more critical here.

In figure 17.2, it was still quite plausible that the dashed arrow succeeded in
canceling the opposite errors in the two solid arrows. Given that those two
solid arrows, corresponding to forward Euler and backward Euler, were only
first-order accurate, I can see that the error in the dashed arrow just may be
second-order accurate. Whether the two first-order errors of the solid arrows
actually cancel in leading order, I'm not sure, but we might be lucky.

But then you start introducing other assumptions: that you can swap the new
second forward Euler arrow for the old backward Euler error, and stuff like that.
I must say, here I have totally lost my intuition.

Frankly, I feel on really shaky ground, talking about an order of a differential
equation. I have some vague sense of what it could mean, but I wouldn’t be
able to define it.

Erica: Here is the basic idea. If an algorithm is nth order, this means that it
makes an error per step that is one order higher in terms of powers of the time
step. What I mean is this: for a simple differential equation

dx
- =@ (10.1)

the error that we make in going from time ¢ to time ¢ + 1, with dt = ;411 — ¢;,
can be written as:

Sxiyq = B(dt)" T (10.2)

Here the coefficient B is a function of z, but it is almost independent of the size
of the time step dt, and in the limit that dt — 0, it will converge to a constant

10.4. SPECIFYING THE STEPS 119

value B(z,dt) — B(z), which in the general case will be proportional to the
(n+1) th time derivative of f(z(t)), along the orbit z(t).

In practice, we want to integrate an orbit over a given finite interval of time,
for example from ¢t = 0 to t = T. For a choice of step size dt, we then need
k = T'/dt integration steps. If we assume that the errors simply add up, in other
words, if we don’t rely on the errors to cancel each other in some way, then the
total integration error after k steps will be bounded by

6x(T) < kC(dt)" Tt = %C(dt)"“ = TC(dt)" (10.3)

where C' is proportional to an upper bound of the absolute value of the (n+1)
th time derivative of f(z(t)), along the orbit x(t).

In other words, for an nth order algorithm, the error we make after integrating
for a single time step scales like the (n+1) th power of the time step, and the
error we make after integrating for a jt;fixed finite amount of timej/t; scales
like the n th power of the time step.

Dan: I'm now totally confused. I don’t see at all how these higher derivatives
of fcome in. In any case, for the time being, I would prefer to do, rather than
think too much. Let’s just code up and run the algorithm, and check whether
it is really second order.

Erica: That’s fine, and I agree, we shouldn’t try to get into a complete numerical
analysis course. However, I think I can see what Carol is getting at. If we apply
her reasoning to the forward Euler algorithm, which is a first order algorithm,
we find that the accumulated error over a fixed time interval scales like the first
power of time. Yes, that makes sense: when we have made the time step ten
times smaller, for example in sections 7.3 and 8.2, we have found that the error
became roughly ten times smaller.

Carol: So if the modified Euler algorithm is really a second-order algorithm,
we should be able to reduce the error by a factor one hundred, when we make
the time step ten times smaller.

Erica: Yes, that’s the idea, and that would be great! Let’s write a code for it,
so that we can try it out.

Dan: I'm all for writing code! Later we can always go back to see what the
theory says. For me, at least, theory makes much more sense after I see at least
one working application.

10.4 Specifying the Steps

Carol: It should be easy to implement this new modified Euler scheme. The
picture we have drawn shows the change in position of a particle, and we should
apply the same idea to the change in velocity.

120 CHAPTER 10. THE MODIFIED EULER ALGORITHM

For starters, let us just look at the position. First we have to introduce some
notation.

Erica: In the literature, people often talk about predictor-corrector methods.
The idea is that you first make a rough prediction about a future position, and
then you make a correction, after you have evaluated the forces at that predicted
position.

In our case, in fig. 17.1, the first solid arrow starts at the original point r;. Let
us call the end point of that arrow r; i ,, where the p stands for predicted, as
the predicted result of taking a forward Euler step:

rit1p =10 + v;dt (104)

The second arrow shows another prediction, namely for yet another forward
Euler step, which lands us at r;ys p:

it2p = Tit1p T VH,Lpdt (105)

Dan: But here you are using the velocity at time ¢ 4+ 1, something that you
haven’t calculated yet.

Erica: I know, we’ll come to that in a moment, when we write down the velocity
equivalent for Eq. (10.4). I just wanted to write the position part first. We can
find the corrected new position by taking the average of the first two forward
Euler steps, as indicated in fig. 17.1:

tigie = it 5 {(Civip—1i)+ (Tivap —Tiyip)}
= 1+ (Tip2p —19)
= 5 (ri+Tiy) (10.6)

Carol: As Dan pointed out, we have to do a similar thing for the velocities. I
guess that everything carries over, but with v instead of r and a instead of v.

Erica: Yes, in fact it is just a matter of differentiating the previous lines with
respect to time. Putting it all together, we can calculate all that we need in the
following order, from predicted to corrected quantities:

Tipyip = Iy + Vidt

Vitlp = Vi+adt

Tit2p = Titlp+ Vigrpdt
Vitap = Viplp +ai41pdt
Titl1ec = % (ri +rig2p)

Vitle = 3 (Vit Vigap) (10.7)

10.5. IMPLEMENTATION 121

Dan: Just on time delivery, as they say: v;y1, is calculated just before it is
needed in calculating r; 12 », just as Erica correctly predicted (no pun intended).

10.5 Implementation

Carol: Here is the new code. TI'll call it euler modified_10000_steps_sparse.rb.
Let’s hope we have properly modified the original Euler:

include Math

x =1

y =

z =0

vx = 0

vy = 0.5

vz = 0

dt = 0.001

print (X, n n s y, n n s z’ n II)
prin-t (VX, n n s vy, n n s VZ, ll\nll)

10000.times{|il
r2 = X*¥X + y*xy + z*z
r3 = r2 x sqrt(r2)

ax = - x / r3
ay = -y / r3
az = -z / r3
x1 = x + vx*xdt
yl =y + vyxdt
z1l = z + vzxdt

vxl = vx + ax*dt

vyl = vy + ay*dt

vzl = vz + azxdt

r12 = xlxx1 + yl*xyl + zlxzl
r13 = r12 * sqrt(rl2)

axl = - x1 / r13
ayl = - y1 / r13
azl = - z1 / r13

x2 = x1 + vxlxdt
y2 = y1 + vylxdt
z2 = zl + vzlxdt
vx2 vxl + axlx*dt
vy2 = vyl + aylxdt
vz2 vzl + azlxdt

122 CHAPTER 10. THE MODIFIED EULER ALGORITHM

0.4 T T T T T T
ified_10000_steps_sparse.out” +

03 |
02

0.1 |

%
-0.2 4
03 | B

04 1 1 i 1 1 1
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Figure 10.5: First attempt at modified Euler integration, with step size dt =
0.001.

x = 0.5 * (x + x2)

y = 0.5 x (y + y2)

z = 0.5 x (z + 2z2)

vx = 0.5 * (vx + vx2)

vy = 0.5 x (vy + vy2)

vz = 0.5 * (vz + vz2)

if i%10 ==
print(x, L ¥, U T "y
print(vx, " ", vy, " ", vz, "\n")

end

}

10.6 Experimentation

Carol: As you can see I am giving it time steps of size 0.001, just to be on
the safe side. Remember, in the case of plain old forward Euler, when we chose
that step size, we got figure 9.1. Presumably, we will get a more accurate orbit
integration this time. Let’s try it!

|gravity> ruby euler_modified_10000_steps_sparse.rb > euler_modified_10000_steps_s

Here are the results, in figure 10.5.

10.7. SIMPLIFICATION 123

Dan: Wow!!! Too good to be true. I can’t even see deviations from the true
elliptic orbit! This is just as good as what we got for forward Euler with a
hundred times more work, in figure 9.3.

Erica: fifty times more work, you mean. In figure 9.3, we had used time steps
of 107°, a hundred times smaller than the time steps of 1073 that we used in
figure 10.5; but in our modified Euler case, each step requires twice as much
work.

Dan: Ah, yes, you're right. Well, I certainly don’t mind doing twice as much
work per step, if I have to do far fewer than half the number of steps!

10.7 Simplification

Carol: Let’s try to do even less work, to see how quickly things get bad. Here,

I’ll make the time step that is ten times larger, in the file euler modified_1000_steps.rb.
This also makes life a little simpler, because now we no longer have to sample:

we can produce one output for each step, in order to get our required one thou-

sand outputs:

include Math

x =1

y=0

z =0

vx = 0

vy = 0.5

vz = 0

dt = 0.01

print(x, " ", y, " ", =z, " ")
print(vx, " ", vy, " ", vz, "\n")

1000. times{
r2 = X*X + y*xy + z*z
r3 = r2 x sqrt(r2)

ax = - x / r3
ay = -y / r3
az = -z / r3
x1 = x + vx*xdt
yl =y + vyxdt
z1l = z + vzxdt

vxl = vx + axxdt
vyl = vy + ay*xdt
vzl = vz + azxdt

124 CHAPTER 10. THE MODIFIED EULER ALGORITHM

r12 = x1*x1 + ylxyl + zlxzl
r13 = r12 * sqrt(r12)

axl = - x1 / ri13

ayl = - y1 / r13

azl = - z1 / ri13

x2 = x1 + vxlxdt

y2 = yl + vylxdt

z2 = zl1 + vzlxdt

vx2 = vxl + axlx*xdt

vy2 = vyl + aylxdt

vz2 = vzl + azlxdt

x = 0.5 * (x + x2)

y =0.5 % (y + y2)

z = 0.5 % (z + z2)

vx = 0.5 * (vx + vx2)

vy = 0.5 *x (vy + vy2)

vz = 0.5 * (vz + vz2)

print(x, " ", y, " ", z, " ")
print(vx, n L vy, " " ovz, n\nu)

Carol: This approach should need just twice as much work as our very first
attempt at integrating the elliptic orbit, which resulted in failure, even after we
had corrected our initial typo, as we could see in figure 8.2.

|gravity> ruby euler_modified_1000_steps.rb > euler_modified_1000_steps.out

Erica: Again, this is far better than what we saw in figure 8.2. There we
couldn’t even complete a single orbit!

10.8 Second Order Scaling

Dan: Yes, it seems clear that our modified Euler behaves a lot better than
forward Euler. But we have not yet convinced ourselves that it is really second
order. We’d better test it, to make sure.

Carol: Good idea. Here is a third choice of time step, ten times smaller than
our original choice, in file euler modified_100000_steps_sparse.rb:

include Math

10.8. SECOND ORDER SCALING

0.4

125

01

-0.1

-0.2 |

-03 |

05 I I I

: :
—
P

ulerimodifie‘dj Ooofsteps‘.out"

+

Figure 10.6: Second attempt at modified Euler integration, with step

0.01.

y=20
z =0
vx = 0
vy =0
vz = 0
dt = 0
prlnt (X, n n s y, n n s Z, n II)

prlnt (VX, n n s vy, n n s vz, ll\nll)

100000.times{|1i]|

r2 = x*¥x + y*y + z*xz
r3 = r2 x sqrt(r2)

ax = - x / 3

ay = -y / r3

az = - z / r3

xl = x + vxxdt

yl =y + vy*xdt

zl = z + vzxdt

vxl = vx + axxdt

vyl = vy + ayxdt

vzl = vz + azxdt

r12 = x1*x1 + ylxyl + zlxzl
r13 = r12 * sqrt(ri2)
axl = - x1 / r13

size dt =

126 CHAPTER 10. THE MODIFIED EULER ALGORITHM

ayl = - y1 / ri13
azl = - z1 / ri13
x2 = x1 + vxlxdt
y2 = y1 + vylxdt
z2 = zl + vzlxdt
vx2 = vxl + axlx*xdt

vy2 = vyl + aylxdt
vz2 = vzl + azlxdt
x = 0.5 * (x + x2)
y =0.5x (y + y2)
z = 0.5 % (z + z2)

vx = 0.5 * (vx + vx2)
vy = 0.5 x (vy + vy2)

vz = 0.5 * (vz + vz2)
if i%100 == 99
print(x, " ", y, " ", =z, " ")
print(vx, " ", vy, " ", vz, "\n")
end

With the three choices of time step, we can now compare the last output lines
in all three cases:

|gravity> ruby euler_modified_1000_steps.rb | tail -1
0.400020239524913 0.343214474344616 0.0 -1.48390077762002 -0.0155803976141248

|gravity> ruby euler_modified_10000_steps_sparse.rb | tail -1
0.598149603243697 -0.361946726406968 0.0 1.03265486807376 0.21104830479922 O.

|gravity> ruby euler_modified_100000_steps_sparse.rb | tail -1
0.59961042861231 -0.360645741133914 0.0 1.03081178933713 0.213875737743879 O.

Well, that’s pretty clear, isn’t it? The difference between the last two results
is about one hundred times smaller, that the difference between the first two
results.

In other words, if we take the last outcome as being close to the true result,
then the middle result has an error that it about one hundred times smaller
than the first result. The first result has a time step that is ten times larger
than the second result. Therefore, making the time step ten times smaller gives
a result that is about one hundred times more accurate. We can congratulate
ourselves: we have clearly crafted a second-order integration algorithm!

Chapter 11

Arrays

11.1 The DRY Principle

Dan: What a difference a second-order scheme makes! Clearly, we can the same
accuracy with far fewer calculations than with a first-order scheme. I wonder
whether we can go to even higher order schemes, like third order or fourth order
or who knows what order.

Erica: Yes, in stellar dynamics, depending on the application, various orders
are used. In star cluster calculations, for example, traditionally a fourth-order
scheme has been the most popular. In contrast, in planetary dynamics, people
routine use even higher-order schemes, like tenth or twelfth order schemes.

But before we go any further in climbing the ladder of integration orders, I
really want to write a leapfrog code. The modified Euler version that we have
discovered was interesting as such, but in astrophysics at least, the leapfrog is
used much more often. Presumably it has some advantages, and in any case,
I’d like to see how it behaves.

Dan: What is a leapfrog?

Erica: It is probably the most popular integration algorithm, not only in astro-
physics, but also in molecular dynamics, as well as in other fields. It combines
simplicity with long-term stability. Shall I sketch it out?

Carol: Before we do your ‘before’, I have an urgent wish: I want to clean up
the last code we’ve written. If we just go on adding extra lines to produce
higher-order codes, pretty soon the code becomes a bunch of spaghetti.

Look, everything we do is spelled out separately for the x coordinate, and the
again for the y coordinate and then once again for the z coordinate. That’s just
plain silly. It violates the most basic principle in software writing, the DRY
principle: Don’t Repeat Yourself.

127

128 CHAPTER 11. ARRAYS

Dan: What’s so wrong with repeating yourself?

Carol: Lot’s of things are wrong with that! First of all, repetitions make a
code unnecessarily long, and therefore harder to read. Secondly, if you want to
modify a feature of a code, it is very difficult to do so correctly if that same
feature is repeated elsewhere in the code, even if it is repeated in a place nearby.
It is very easy to overlook the repetition, and only modify the first instance that
you encounter.

Related to that is a third point: even the first time around that you write a
code, if you start repeating yourself, it is quite likely that you make a mistake

Erica . . . as we did in our very first code, with our typo!

Carol: Yes, indeed, I'd forgotten that already. Yes, that was a classic example
of the type of penalty you can get for violating the DRY principle!

11.2 Vector Notation

Dan: When we were drawing pictures, we could look at the vectors themselves,
but when we started coding, we had to go back to the components of the vectors.
Are you suggesting to introduce some graphical way of coding, in which we can
specify what happens directly to the vectors, as arrows, rather than to their
separate z, y, and z components?

Carol: Well, in a way. Until the middle of the previous century, mathematicians
often wrote vector equations in component form. But then they started more
and more to use vector notation, by writing down symbols that stood for vectors
as such, without any mention of components. On the level of the mathematical
equations we have written down, we have used vector notation right from the
beginning: we happily wrote things like ro = r; + vidt on paper, but then we
tediously wrote the same thing on our computer screen as:

x2 = x1 + vxlxdt
y2 = yl1 + vylxdt
z2 zl + vzlxdt

Erica: So you would like to write a computer code with lines like
r2 = rl1 + vixdt

where it would be understood that r2, etc., would be an object with the three
components { x2, y2, z2 }.

Carol: Yes, exactly! But for that to work, a lot more should be understood. For
example, it should also be understood that the simple + symbol is now a much

11.3. ARRAYS 129

more complicated addition operator. It should be clear to the computer that
each of the components of r1 should be added to the equivalent component
of the second expression, vi*dt. And in that last expression the * symbol
should in turn be understood to be a more complicated multiplication operator.
Multiplying a vector v1 with the scalar quantity dt should be understood as
multiplying each of the components of the vector with the same scalar.

Dan: I like the idea of simplifying the code, and making it look more like the
pen-and-paper expressions, but boy, the computer will have to understand a lot!
Let me write down what you just said, to see whether I at least understand it.

Writing in the code a = b + c¢ for three vector quantities a, b, c¢ should be
translated automatically into the following code fragment

ax = bx + cx

ay = by + cy
az bz + cz

where ax is the first component of the vector a, ay is its second component, and
so on. And writing in the code a = 3*b will be translated into

ax = 3 * bx
ay = 3 * by
az 3 *x bz

Carol: Yes, exactly. That would be nice, wouldn’t it?

Erica: Well, let’s try to make that work. The first thing that comes to mind
is to use arrays. If we represent a vector by an array, then each element of an
array can contain a component of the vector.

Dan: That makes sense. I hope Ruby has arrays, just like Fortran?

Carol: Ruby sure does. But, as you can guess, they are far more powerful. A
single array can contain objects of different types in different elements, and the
length of an array can grow and shrink.

Dan: Seems like overkill to me. But who cares, let’s get started.

11.3 Arrays

Erica: Before rewriting our modified Euler code, let us start with the simplest
case, and rewrite our original forward Euler code, euler.rb.

Carol: Here, let me translate that code, line for line, into array notation. That
way we can make sure that we perform the same calculations. Here is file
euler_array_try.rb:

130 CHAPTER 11. ARRAYS

include Math

r = [1, 0, 0]

v = [0, 0.5, 0]

dt = 0.01

print(r[O], " n, r[1], n n’ I'[2:|, n n)
print(v[0], " ", v[1]1, ™ ", v[2], "\n")

1000.timesq{
r2 = r[0]*r[0] + r[1]*r[1] + r[2]*r[2]
r3 = r2 * sqrt(r2)

al0] = - r[0] / =3
al1] = - r[1] / 3
al2] = - r[2] / 3

r[0] += v[0]*dt
r[1] += v[1]*dt
r(2] += v[2]*dt
v[0] += a[0]*dt
v[1] += a[1]*dt
v[2] += a[2]*dt
print (0], ™ ", r[1], " ", r[2], " ™)
print(v[O], " ", v[1], " ", v[2], "\n")

As you can see, I have simply replaced x by r[0], y by r[1], z by r[2], and
similarly for the velocities and accelerations, I have replaced vx by v[0] and ax
by a[0], and so on for the other elements.

Dan: From your example, I guess that arrays start with element zero?

Carol: Ah, yes, that’s true, like in C, where the first element of an array foo
is foo[0], unlike Fortran, where the first element is foo[1].

Erica: I noticed that right at the start of the program, you have done a bit
more already than simply replacing x = 1 by r[0] = 1,y = 0 by r[1] = 0,
and z = 0 by r[2] = 0.

Instead, you have directly assigned all three values in one line by writing r =
[1, 0, 0O].

Carol: That’s true too. I guess I'm getting already familiar enough with Ruby
that I had not noticed that I had made a shortcut. Yes, this is a nice example
of the compact way in which Ruby can assign values. In fact, this line, which
is the first line of the program after the include statement, defines r as having
the type ‘array’, and in fact an array of three elements. Similarly, the second
line defines v, too, as an array containing three elements.

In the case of r, its three elements are integers, and in the case of v, the first and

11.4. DECLARATION 131

last elements are integers, and the middle element is a floating point number.
As T had mentioned before, Ruby allows each array element to have its own
dynamic type. In practice, though, as soon as we start calculating with these
numbers, most of them will quickly become floating point numbers. Adding an
integer and a floating point number, or multiplying an integer with a floating
point number, is defined as giving a floating point number as a result, as you
would expect.

11.4 Declaration

Dan: That all sounds reasonable. Shall we check whether we get the same
result as we did before?

Carol: Good idea. I'll just print the last line, so that we can compare that one
with our old result:

|gravity> ruby euler_array_try.rb | tail -1

euler_array_try.rb:13: undefined local variable or method ‘a’ for main:Object (NameError)
from euler_array_try.rb:10:in ‘times’

from euler_array_try.rb:10

1 0 0 0 0.5 O

Dan: Well, something went wrong right at the start. It seems like there is a
problem with the acceleration array a. The only output line we got was from
the print statement before entering the loop.

Carol: Ah, I see. The two variables r and v are recognized as arrays, because
they are defined as such, in the first two assignment lines of the program. The
line:

r = [1, 0, 0]

says clearly: r is an array with three elements, and the elements are 1, 0, and
0.

In contrast, the first time that a is used occurs in the line:

al0] = - r[0] / r3

and here we are not specifying what a is; we are not assigning anything to a.
Instead, we are assigning a value to a element of a, as if a had already been
defined as an object that has elements.

132 CHAPTER 11. ARRAYS

Erica: In C, you could just declare a to be an array. But you have told us
before that in Ruby, because of dynamic typing, there was no need to declare
the type of a variable. What gives?

Carol: Well, in this case we do need to give some extra information, otherwise
the Ruby interpreter cannot possibly know what we mean. And yes, here we
effectively need to declare a as an array.

Carol: How should we do that? We could give fake values, say a = [0, 0, 0]
right at the beginning of the program.

Carol: That would be confusing, since a reader would wonder what the meaning
would be of those three zeroes. In fact, in Ruby there is no need to specify how
many elements an array has. All we need to say is that the variable a has the
type of an array. Or more precisely, in Ruby’s terminology: the class of a is
Array, which is one of the built-in classes.

11.5 Classes

Dan: What is a class?

Carol: In Ruby, the word class is used to talk about the collection of possible
things that have a particular type.

Dan: What exactly is a type?

Carol: The number 3 is an example of the type integer, the string "hello” is an
example of the type string, and an array [3, "hello”] is an example of the type
array.

In Ruby, roughly speaking, each concrete example of a type is called an object,
and the collection of all possible objects of a given type is called a class. Each
object of that type is called an instance of the class that corresponds to that
type. In Ruby, the character string “hello” is an object, an instance of class
String.

Dan: What about numbers?

Carol: In Ruby there is the class of Fixnum, which is the class of integers,
numbers such as 7 or —5, and the class Float, which is the class of floating point
numbers, such as 1.41421, and so on. Some classes, such as arrays, allow objects
to contain objects of other classes. For example, the object [-5, 1.41421] is an
array, which means it is an instance of the class Array, while the two elements
are instances of the classes Fixnum and Float, respectively.

Erica: That’s very different from how it is done in C++-, where all the elements
of an array always have the same type. In C++, you can have an array [-5,
8, 3, ...] and an array [1.41421, 3.14, ...] but you certainly cannot
mix the types, by giving each element of the array a different type.

Carol: Well, in Ruby you can. This is one of the many ways in which Ruby is

11.5. CLASSES 133

far more flexible than C++.

Coming back to Dan’s question about classes, let’s see how we can interrogate
Ruby about class membership:

|gravity> irb

a = [-5, 1.41421]
[-5, 1.41421]
a.class

Array

a[0].class
Fixnum

a[1] .class

Float
a[1].class.class
Class
a.class.class
Class

quit

Erica: Ah, so each class, like Fixnum or Array, or whatever is a member of the
class Class?

Carol: Yes, more precisely, every constant or variable in Ruby is an object, and
therefore must be an instance of a class. The number 3 is an object of class
Fixnum, and the class Fixnum is an object of class Class. Note the convention:
in Ruby the name of a class always starts with a capital letter.

Erica: And what about Class? What is that an instance of?
Carol: Try it, ask irb.
Erica: Okay:

|gravity> irb

3

3

3.class

Fixnum
3.class.class

Class
3.class.class.class
Class

quit

So Class is a member of class Class. That sounds circular!

134 CHAPTER 11. ARRAYS

Carol: But it isn’t. This is an example of the strength of Ruby. Like Lisp
and other seemingly circular languages, Ruby has the power to invoke itself,
without arbitrary boundaries between metalevels. This is one of my favorite
topics. Shall T explain how it works?

Dan: Not today. I got enough of an idea of what a class could be. Let’s keep
writing code.

Chapter 12

Array Methods

12.1 An Array Declaration

Carol: So where were we? We wanted to declare a as an array. more precisely
as an instance of the Array class. Here is one way to do that:

a=[]

Let me write the new version in a new file, euler_array.rb, in the hope things
will be correct now:

include Math

r = [1, 0, 0]

v = [0, 0.5, 0]

a =[]

dt = 0.01

print(r[O], n ||, I'[l], n n’ r[2]’ n ||)
print(v[0], " ", v[1], " ", v[2], "\ao")

1000.times{
r2 = r[0]*r[0] + r[1l*xr[1] + r[2]*r[2]
r3 = r2 * sqrt(r2)

al[0] = - r[0] / r3
al[1] = - r[1] / 3
al2] = - r[2] / r3

r[0] += v[0]*dt

135

136 CHAPTER 12. ARRAY METHODS

r[1] += v[1]*dt
r[2] += v[2]*dt
v[0] += a[0]x*dt
v[1] += a[1]*dt
v[2] += a[2]*dt
print(rf0], " ", r[1], " ", r[2], " "™
print(v[0], " ", v[1], " ", v[2], "\n")

12.2 Three Array Methods

Dan: Seeing is believing. Does it now work?

Carol: Let’s try:

|gravity> ruby euler_array.rb | tail -1
7.6937453936572 -6.27772005661599 0.0 0.812206830641815 -0.574200201239989 0.

Dan: Great! And it would be even better if this is what we got before.
Carol: Well, let’s check:

|gravity> ruby euler.rb | tail -1
7.6937453936572 -6.27772005661599 0.0 0.812206830641815 -0.574200201239989 0.

So far, so good. Okay, we got our first array-based version of forward Euler
working, but it still looks just like the old version. Time to start using some of
the power of Ruby’s arrays.

In general, a Ruby class can have methods that are associated with that class.
A while ago, we have come across a very simple in section 5.4, where we encoun-
tered the method times that was associated with the class Fixnum. By writing
10.times we could cause a loop to be transversed ten times.

Ruby has a somewhat confusing notation (class name)#(method name) to de-
scribe methods that are associated with classes. The example 10.times is a
way to invoke the method Fixnum#times. I find it a bit confusing, because in
practice you always use the dot notation (object name). (method name) in your
code. You'll never see the # notation in a piece of code; you only encounter it
in a manual or other text description of a code.

Back to our application. There are three methods for the class Array that we
can use right away, namely Array#each, Array#each_index and Array#map.

I’ll explain what they all do in a moment, but it may be easiest to show how
they work in our forward Euler example, in file euler_array_each.rb:

12.3. THE METHODS EACH AND EACH_INDEX 137

include Math

r = [1, 0, 0]

v = [0, 0.5, 0]

dt = 0.01

r.each{|x| print(x, " ")}
v.each{|x| print(x, " ")}
print "\n"

1000.times{

r2 =0

r.each{|x| r2 += x*x}

r3 = r2 *x sqrt(r2)

a = r.map{Ix| -x/r3}

r.each_index{lk| rl[k] += v[k]*dt}
v.each_index{|k| v[k] += alk]*dt}
T
v

.each{|x| print(x, " ")}
.each{|x| print(x, " ")}
print "\n"

Erica: That looks nice and compact.
Dan: Does it work?

Carol: Let’s see:

|gravity> ruby euler_array_each.rb | tail -1
7.6937453936572 -6.27772005661599 0.0 0.812206830641815 -0.574200201239989

12.3 The Methods each and each index

Erica: Good! Now let’s look at these magic terms. I can guess what each does.
It seems to iterate over all the elements of an array, applying whatever appears
in parentheses to each element.

Carol: Yes, indeed. And while working with a specific element, it needs to give
that element a name. The name is defined between the two vertical bars that
follow the opening parentheses. It works just like the lambda notion in Lisp.

Dan: I've no idea what lambda notation means, but I can see what is happening
here. In the line

0.0

138 CHAPTER 12. ARRAY METHODS

r.each{|x| print(x, " ")}
writing {1x| ...} lets x stand for the element of the array r. First x = r[0],
and the ... command then becomes print(r[0], " "). Then in the next

round, x = r[1], and so on.

Hey, now that I'm looking at the code a bit longer, I just noticed that the con-
struction .each{|x| ...} isactually quite similar to the construction .times{. ..
that we use in the loop.

Carol: Yes, in both cases we are dealing with a method, each and times that
causes the statements in parentheses to be iterated. And the analogy goes
further. Remember that we learned how to get sparse output? At that time
we added a counter to the times loop, so that it became .times{l|il| ...}.
Just like x stands in for each successive array element in r.each{|x| ...}, so
i stands in for each successive value between 0 and 999 in 1000.times{|il

Erica: As for your second magic term, the method each_index seems to do
something similar to each. What’s the difference?

Carol: Take the line:

r.each_index{|k| r[k] += v[k]*dt}

There we want to add to each element of array r the corresponding element of
array v, multiplied by dt. However, we cannot just use the each method, since
in that case we would iterate over the values of r, and the dummy parameter,
defined between vertical bars, will take on the values r[0], r[1], and so on.
That would give us no handle on the value of the index, which is 0 in the first
case, 1 in the second, and so on.

In the print case above, we had no need to know the value of the index of each
element of the array that we were printing. But here, the value of the index is
needed, otherwise we cannot line up the corresponding elements of r and v.

Erica: Isee. Or at least I think I do. Let me try it out, using irb.

|gravity> irb
a=1[4,7, 9]

[4, 7, 9]

a.each{|x| print x, "\n"}
4

7

9

[4, 7, 9]

a.each_index{|x| print x, "\n"}

12.4. THE MAP METHOD 139

0

1

2

[4, 7, 9]

a.each_index{|x| print al[x], "\n"}
4

7

9

(4, 7, 9]

quit

Yes, that makes sense.
Dan: Why do we get an echo of the whole array, at the end of each result?

Carol: That’s because irb always prints the value of an expression. First the
expression is evaluated, and as a side effect the print statements in the expression
are executed. But then a value is returned, which turns out to be the array a
itself. That’s not particularly useful here, but in general, it is convenient that
irb always gives you the value of anything it deals with, without you having to
add print statements everywhere.

12.4 The map Method

Dan: What about this mysterious map that you are using in line:

a = r.map{|x| -x/r3}

Carol: Ah, that is another Lisp like feature, but don’t worry about that, since
you’re not familiar with Lisp. The method map, when applied by a given array,
returns a new array in which every element is the result of a mapping that
is applied to the corresponding element of the old array. That sounds more
complicated than it really is. Better to look at an example:

|gravity> irb
a=[4, 7, 9]

[4, 7, 9]
a.map{lx| x + 1}
[6, 8, 10]
a.map{lx| 2 * x}
[8, 14, 18]

quit

140 CHAPTER 12. ARRAY METHODS

Dan: Ah, now I get it. In the first case, the mapping is simply adding the
number one, and indeed, each element of the array gets increased by one. And
in the second case, the mapping tells us that any element x is doubled to become
2 * x, and that’s exactly what happens.

Carol: Yes, and notice how convenient it is that irb echoes the value of each
statement you type. You don’t have to write print a.map{|x| x + 1}, for
example.

So in our case the line

a = r.map{|x| -x/r3}

transforms the old array r into a new array a for which each element gets a
minus sign and is divided by r3, which is just what we needed.

Erica: Ah, look, you forgot to include the line a = [], and it still worked, this
time. That must be because now we are actually producing a new array a, and
we are no longer trying to assign values to elements of a as we did before.

Carol: That’s right! I had not even realized that. Good. One less line to worry
about.

Oh, by the way, when you look at books about Ruby, or when you happen to see
someone else’s code, you may come across the method Array#collect. That is
just another name for Array#map. Both collect and map are interchangeable
terms. This often happens in Ruby: many method names are just an alias for
another method name. I guess the author of Ruby tried to please many of his
friends, even though they had different preferences.

Erica: I prefer the name map, since it gives you the impression that some type
of transformation is being performed. As for the word collect, it does not
suggest much work being done.

Carol: I agree, and that’s why I chose to use map here.

12.5 Defining a Method

Erica: Carol, you convinced us that we should obey the DRY principle, and
indeed, we are no longer repeating ourselves on the level of vector components.
But when I look at the last code that you produced, there is still a glaring
violation of the DRY principle. Look at the three lines that we use to print the
positions and velocities right at the beginning. The very same three lines are
used inside the loop, at the end.

12.6. THE ARRAY#INJECT METHOD 141

Carol: Right you are! Let’s do something about that. Time to define a method

of our own. Here, this is easy. Let’s introduce a method called print_pos_vel(r,v),
which prints the position and velocity arrays. It has two arguments, r and v,
the values of the two arrays it should print.

We can write the definition of print_pos_vel at the top of the file, and then we
can invoke that method wherever we need it; I'll call the file euler_array_each_def .rb:

include Math

def print_pos_vel(r,v)

r.each{|x| print(x, " ")}
v.each{|x| print(x, " ")}
print "\n"

end

r = [1, 0, 0]

v = [0, 0.5, 0]

dt = 0.01

print_pos_vel(r,v)

1000.timesq{
r2 =0
r.each{|x| r2 += x*x}
r3 = r2 * sqrt(r2)
a = r.map{|x| -x/r3}
r.each_index{|k| r[k] += v[k]*dt}
v.each_index{|k| v[k] += al[k]=*dt}
print_pos_vel(r,v)

Erica: Good! I think we can now certify this program as DRY compliant.
Dan: Does it work?

Carol: Ah yes, to be really compliant, it’d better work. Here we go:

|gravity> ruby euler_array_each_def.rb | tail -1
7.6937453936572 -6.27772005661599 0.0 0.812206830641815 -0.574200201239989 0.0

12.6 The Array#inject Method

Dan: I wonder, would it be possible to make the code even shorter?

142 CHAPTER 12. ARRAY METHODS

Erica: Making a code shorter doesn’t necessarily make it more readable!

Dan: Sure, but I'm just curious.

Carol: Well, if you want to get fancy, there is an array method called inject.
It’s a strange name for what is something like an accumulation method. Let me

show you:

|gravity> irb

a = [3, 4, 5]

[3, 4, 5]

a.inject(0){lsum, x| sum + x}

12

a.inject(1){lproduct, x| product * x}
60

quit

Erica: I get the idea. What inject(p){ly, x| y @ x} does is to give y the
initial value p, and then for each array component x, it applies the @ operator,
whatever it is, to the arguments y and x.

Carol: Indeed. So this will allow me to make the loop part of the code a bit
shorter, in euler_array_injectl.rb:

include Math

def print_pos_vel(r,v)

[r,v].flatten.each{|x| print(x, " ")}
print "\n"
end

r,v = [[1, 0, 0], [0, 0.5, 0]]
dt = 0.01

print_pos_vel(r,v)
1000.times{
r2 = r.inject(0){|sum, x| sum + x*x}
r3 = r2 x sqrt(r2)
a = r.map{|x| -x/r3}
r.each_index{|k| r[k] += v[kl*dt ; v[k] += al[k]*dt}
print_pos_vel(r,v)

Dan: I see. That got rid of the first line of the previous loop code. Does it
work?

12.7. SHORTER AND SHORTER 143

Carol: Good point, let’s first test it:

|gravity> ruby euler_array_injectl.rb | tail -1
7.6937453936572 -6.27772005661599 0.0 0.812206830641815 -0.574200201239989 0.0

Same answer as before. So yes, it works.

12.7 Shorter and Shorter

Dan: And above that, you combined the assignment of the position and velocity
arrays. I'm surprised that that works!

Carol: In general, in Ruby you can assign values to more than one variable in
one statement, where Ruby assumes that the values are listed in an array:

|gravity> irb

a, b, ¢ = [10, "cat", 3.14]
[10, "cat", 3.14]

a

10

b

"cat"

C

3.14

quit

Dan: Oh, and before that, in the print_pos_vel method, you’ve gotten rid of
a line as well. What does flatten do?

Carol: I takes a nested array, and replaces it by a flat array, where all the
components of the old tree structure are now arranged in one linear array.
Here’s an example:

|gravity> irb

(1, [[2, 31, [4,5]1, 6], 7].flatten
(1, 2, 3, 4, 5, 6, 7]

quit

Dan: And then just before the last print statement, you combine two state-
ments into one, using a semicolon. Four little tricks, saving us four lines. I'm
impressed!

Carol: Ah, but I can do better! How about this one, euler_array_inject2.rb?

144 CHAPTER 12. ARRAY METHODS

include Math

def print_pos_vel(r,v)
[r,v,"\n"].flatten.each{|x| print(x, " ")}
end

r,v,dt = [[1, 0, 0], [0, 0.5, 0], 0.01]

print_pos_vel(r,v)
1000.times{
r2 = r.inject(0){|sum, x| sum + x*x}
r3 = r2 x sqrt(r2)
a = r.map{l|x| -x/r3}
r.each_index{|k| r[k] += v[kl*dt ; v[k] += alk]*dt}
print_pos_vel(r,v)

12.8 Enough

Dan: Two lines less. You're getting devious! And does it work?

|gravity> ruby euler_array_inject2.rb | tail -1

I guess not. But how can it produce nothing?

Carol: Beats me. Strange. Let’s show a bit more output:

|gravity> ruby euler_array_inject2.rb | tail -3
7.68562253804505 -6.27197741210993 0.0 0.81228556121432 -0.5742644506056 O.
7.6937453936572 -6.27772005661599 0.0 0.812206830641815 -0.574200201239989

Ah, of course, I've been a bit too clever. By adding the return character \n
character to the same line in the printing method, I have caused an extra two
blank spaces to appear in the end. Well, I can get rid of that simply by reversing
the order, by printing the blank spaces first. Here is euler_array_inject3.rb:

12.8. ENOUGH 145

include Math

def print_pos_vel(r,v)
[r,v,"\n"].flatten.each{|x| print(" ", x)}
end

r,v,dt = [[1, 0, 0], [0, 0.5, 0], 0.01]

print_pos_vel(r,v)
1000. times{
r2 = r.inject(0){|sum, x| sum + x*x}
r3 = r2 x sqrt(r2)
a = r.map{l|x| -x/r3}
r.each_index{|k| r[k] += v[k]l*dt ; v[k] += al[k]*dt}
print_pos_vel(r,v)

and here are the results:

|gravity> ruby euler_array_inject3.rb | tail -3
7.677498893594 -6.26623412376799 0.0 0.8123644451050563 -0.574328834193899 0.0
7.68562253804505 -6.27197741210993 0.0 0.81228556121432 -0.5742644506056 0.0
7.6937453936572 -6.27772005661599 0.0 0.812206830641815 -0.574200201239989 0.0

Same!
Dan: Almost the same: now every line has a few blank spaces at the start.
Carol: Actually, that looks more elegant, doesn’t it?

Erica: Frankly, I'm getting a bit tired of shaving lines from codes. Stop playing,
you two, and let’s move one!

146 CHAPTER 12. ARRAY METHODS

Chapter 13

Overloading the + Operator

13.1 A DRY Version of Modified Euler

Dan: Now how did we get into all this array stuff?

Erica: I wanted to move on to the leapfrog algorithm, but Carol brought up
the DRY principle, Don’t Repeat Yourself, insisting on first cleaning up the
modified Euler code . . .

Carol: . . . which we haven’t done yet, but now we’re all set to do so! It is just

a matter of translating the old file euler modified_1000_steps.rb, introducing
our array notation, just as we did for the code in euler_array_each_def.rb.

Here it is, in euler modified_array.rb

include Math

def print_pos_vel(r,v)

r.each{|x| print(x, " ")}
v.each{|x| print(x, " ")}
print "\n"

end

r = [1, 0, 0]

v = [0, 0.5, 0]

dt = 0.01

print_pos_vel(r,v)
1000. times{

r2 =0
r.each{|x| r2 += x*x}

147

148 CHAPTER 13. OVERLOADING THE + OPERATOR

r3 = r2 x sqrt(r2)
a = r.map{|x| -x/r3}

rl = []
r.each_index{|k| ril[k] = r[k] + v[k]l*dt}
vl = []
v.each_index{|k| vi[k] = v[k] + alk]*dt}
rl2 = 0

rl.each{|x| r12 += x*x}
ri3 = r12 * sqrt(ri2)

al = rl.map{Ix| -x/r13}

r2 = []

rl.each_index{lk| r2[k] = r1[k] + vi[k]*dt}
v2 = []

vi[k] + allk]*dt}
5% (rlk] + r2[k])}
5ox (vlk] + v2[k])}

vl.each_index{|k| v2[k]
r.each_index{|k| r[k]
v.each_index{lk| vl[k]
print_pos_vel(r,v)

]
O O

And before Dan can ask me to do so, let me run it:

|gravity> ruby euler_modified_array.rb | tail -1
0.400020239524913 0.343214474344616 0.0 -1.48390077762002 -0.0155803976141248

I will also compare it to the previous result:

|gravity> ruby euler_modified_1000_steps.rb | tail -1
0.400020239524913 0.343214474344616 0.0 -1.48390077762002 -0.0155803976141248

13.2 Not quite DRY yet

Dan: Bravo! Same answers. And yes, the code has become shorter. I like that.

Erica: Hmmm, just making a code shorter does not necessarily make it better.
You can use semicolons to put two or three lines on one line, but that doesn’t
make the code any prettier. Most likely, it will make the code more opaque.

In fact, I'm sorry to say, I don’t find the new code easier to read. While the old
code was longer, it was very easy to see what happened. But in the new code,
there are all those [k] clumps floating around . . . I thought the whole point
of using arrays was that we could hide the elements of the array!

13.3. ARRAY ADDITION 149

Carol: To some extent, we have hidden things. The methods map, each and
each_index can be attached directly to the arrays themselves, without showing
elements. And our use of each in the print statements shows an example where
there is no ugly [k] showing up at all. But I agree with you, we should be able
to do better.

Erica: Can we really do much better? An array does seem to be the natural
way to represent a physical vector quantity in a computer program. I've never
seen any other way . . . ah, no, I take that back. I once saw a C+-+ program,
where the writer had introduced a special vector class.

Carol: Can you remember what the reason was for doing so?

Erica: I'm not exactly sure now, but it may have had to do with making it
easier to add vectors, by overloading the + operator, and that sort of thing.

Carol: That sounds exactly like what we need. If we take a look at the first line
in our code that contains one of these ugly [k] notations that you so disliked:

rl = []
r.each_index{|k| r1[k] = rl[k] + v[k]=*dt}

you really would like to write this as

rl = r + v*dt

right?

Erica: Yes, that would be great! I would love to get rid of all those [k] blocks.
In fact, I think that we should get rid of them if we want to follow the DRY
principle. Look, we have been repeating this [k] thingy three times in one line,
in our latest code!

13.3 Array Addition

Carol: Fair enough. Well, it’s always a good idea to start simply. The simplest
case I can think of is to add two vectors. If we continue to represent them as
arrays, we can add arrays al and a2 to obtain their sum a as follows:

a =[]
al.each_index{lk| alk] = aill[k] + a2[k]}

which includes the declaration, which is necessary if a has not yet been intro-
duced as an array, earlier in the program.

Now what you would like to write is

150 CHAPTER 13. OVERLOADING THE + OPERATOR
a = al + a2

without any further complications that include references to elements [k] or to
methods such as each_index or to a declaration of a, since after all the addition
of two vectors should obviously produce a new vector. Right?

Erica: It sounds too good to be true, to be able to leave out all that crap, and
to tell the computer only the minimal information needed, as if you were writing
a note for yourself on a scratch pad. Do you really think you can implement all
that, and even do away with the need for declarations?

Carol: I think so. First, let’s see what happens if we don’t make any modifi-
cation. I must admit, I'm not sure what Ruby will do if we ask it to add two
arrays. Well, let’s find out:

|gravity> irb

al = [1, 2, 3]

[1, 2, 3]

a2 = [5, 6, 7]

[5, 6, 7]

a=al + a2

[1, 2, 3, 5, 6, 7]
quit

Dan: I guess that is one way to add two arrays, to just put them end to end,
and string all the elements together. And for many applications that might
just be the right thing to do, for example, if you have an array of the names of
countries in a nation, and you want to add a few more names. But in our case,
this is not what we want. We’d better get:

a = [1+5, 2+6, 3+7] = [6, 8, 10]

Carol: Of course, we can change the definition of ”"+” for array.
Dan: How can you change the definition of a built-in function?

Carol: In Ruby you can change anything, or at least almost anything! But
let’s take only one step at a time. The simplest and safest way to get the
correct addition behavior, is to introduce a new array method. We can call
it Array#plus, and use it to add two arrays in the way Dan just specified,
according to the vector rules that we have in mind for the physical addition of
two vectors.

Erica: But how can you add a new method to the Array class? Somebody
else already has defined the Array class for us. I guess we’ll have to dig into
wherever Ruby is defined, and change the Array class definition?

13.4. WHO IS ADDING WHAT 151

Carol: No digging needed! The neat thing about Ruby, one of the neat things,
is that it allows you to augment a class. Even if someone else had defined a
class, we can always add a few lines to the class definition, for example, when
we want to add a method. The different bits and pieces of the class definition
can live in different places. Nothing to worry about!

It should be simple. From what I've seen so far, I guess that Ruby wants us to
write something like this, in file array_try_additioni.rb:

class Array
def plus(a)
sum = []
self.each_index{|k| sum[k] = self[k]+al[k]}
return sum
end
end

This should add the method plus, that is doing the addition, to the other
existing methods in the Array class. In this way, we don’t disturb anything in
the Array class, so everything should work as it did before. The only difference
is that we can now add arrays in the way we intend for vectors.

13.4 Who is Adding What

Erica: That’s a lot shorter and simpler than I had expected. It seems to
deliver all the three things you promised: it hides the all [k] occurrences, it
hides the each_index and it creates a new vector, so that you don’t have to
declare anything. And all that in just a few lines!

Dan: Not so fast. I'm not there yet. In fact, I don’t understand this at all. To
begin with, shouldn’t addition have two arguments? You're going to add two
vectors, no?

Carol: Yes, but here we’re describing addition from the point of view of an
array. Given one array, all we have to do is to specify one second array, which I
have called a, which can then be added to the given array. The given array itself
simply goes by the name of self, a reserved word that points to the current
instance of the class.

Dan: You mean that the Array class definition describes arrays in general, but
if I deal with a particular array, al, then from the point of view of al itself, a1
is called self?

Carol: Right.

Dan: But we want to get the result a = al + a2. So from the point of view
of a there really are two other arrays involved.

152 CHAPTER 13. OVERLOADING THE + OPERATOR

Carol: Yes, but at first we only have al and a2. That’s all we’ve got, and that’s
what we have to use to construct a. The way I'm trying to define addition is
by starting with one of the two arrays al, and to define a method that allows
al to accept a second array a2. So the whole operation can then be written as

al.plus(a2)

where a2 is the argument for the method plus that is associated with the class
Array of which al is an instance. Now this expression will result a new instance
of the Array class, and we can assign that new instance to the new variable a
by writing:

a = al.plus(a2)
Dan: You can’t write
a = al plus a2

?

Carol: Sorry, no, you can’t; that wouldn’t make any sense. What you can do in
Ruby is leave out the parentheses around the argument of a method. So instead
of writing

a = al.plus(a2)
you can indeed write

a = al.plus a2

13.5 The plus Method

Dan: I'll take your word for it. So if we write this, al uses its own plus method,
and according to the definition you wrote in the Array class, al first creates a
new array called sum, which is an empty array, specified by writing []. Next
it assigns the the value sum[k] = all[k]+a2[k] to each component [k] of the
array sum. That makes sense!

And finally, in the next line you return the value sum, before you reach the end
of the method. In that way a receives the value that al.plus a2 returns, which
is the sum of a1 and a2. Okay, I got it now!

Carol: Let’s hope it works, after everything I’ve told you!

13.6. THE + METHOD 153

|gravity> irb

require "array_try_additionl.rb"
true

al = [1, 2, 3]

[1, 2, 3]

a2 = [5, 6, 7]

[5, 6, 7]

a = al.plus a2

(6, 8, 10]

quit

Dan: Wonderful! That’s just what we ordered.

Erica: A great improvement over the old array addition!

13.6 The + Method

Dan: Still, I can’t say I like your new notation. I'm still not happy about the
asymmetry. Writing

a = al.plus a2

gives the impression that al is charging forward, gobbling up a2 and then spit-
ting out the result. You told me that we cannot write

a = al plus a2

and I understand that such a statement would have no clear meaning in Ruby.
But is there really no way to make the expression more symmetric, rather than
making al the predator and a2 the prey?

Carol: Actually, there is a way to make it at least look more symmetric. It is
just a form of syntactic sugar, as they call it: a way to let the syntax look more
tasty, without really changing the underlying code.

The idea is what is called ‘overloading operators’. We can use the + symbol,
instead of the word plus, and we can redefine the meaning of + for the case of
arrays. This is what I meant when I said earlier that in Ruby you can change
almost anything. I have read about that; let me see whether it works. I believe
the idea is to write something like this, in file array_try_addition2.rb:

class Array
def +(a)
sum = []

154 CHAPTER 13. OVERLOADING THE + OPERATOR

self.each_index{|k| sum[k] = self[k]+alk]}
sum
end
end

13.7 A Small Matter: the Role of the Period

Dan: All you’ve done is to change plus into + in the second line. Can that
really work?

Erica: There is one more change: you’ve also left out the word return in the
third line of the definition.

Carol: Ah yes, most people writing Ruby seem to leave out return; it is really
not necessary to add that. You just have to remember to let the last line of a
definition echo the result you want to return. The result of invoking a method
is to return whatever the last line of the definition evaluates to.

And yes, other than that, I’ve just replaced plus by +. In fact, in all cases where
Ruby uses +, it is only syntactic sugar for invoking a method that is associated
with the left-hand side of the + symbol. So even though it looks symmetric, it
never really has been a symmetric operation.

Dan: But how can it work? I thought that you always needed to write a dot
between an object and its method.

Carol: Generally, that is true, and in fact, if you want to, you still can write
the + operator using a period like normal Ruby methods.

Dan: Let me try:

|lgravity> irb
2.+ 3

5

8.% 4

32

quit

Erica: Wow, surprise. They work just like ordinary Ruby methods.

Dan: Are you sure? Isn’t 2. just translated into 2.0 so that we are only
evaluating 2.0 + 37 Let’s check, by adding a space after the periods:

|lgravity> irb
2. +3

13.8. TESTING THE + METHOD 155

5

8. x 4
32
quit

Ah, you see, the zero is just added, like in Fortran.

Carol: I don’t think so. Let me try a simpler case:

|gravity> irb

2.

quit

NoMethodError: undefined method ‘quit’ for 2:Fixnum
from (irb):1

from :0

quit

You see: 2. is not translated into 2.0, but is in fact illegal. Or more accurately,
it is okay in Ruby to leave space after the period between an object and its
method. Here irb is asking for the method name, and doesn’t like the fact
that I just wanted to quit; irb interpreted the quit as the method name it was
waiting for.

Dan: I agree, we can now be sure that 2.+ really invokes the addition operator
of the number 2. Okay, now we know.

Carol: But of course, it is much more intuitively obvious to write 2 + 3 than to
write 2.+ 3. I have mentioned earlier the principle of least surprise, introduced
by Matsumoto, the designer of Ruby, as a guide line for the Ruby syntax. Even
though in fact Ruby has much in common with Lisp, Matsumoto decided not
to use a lisp like notation, in which 2 + 3 would have looked something like (+
(2, 3)), a beautifully clear notation once you get used to it, but unlike 2 + 3
not immediately obvious when somebody comes across it for the first time.

Dan: I'd say!

13.8 Testing the + Method

Carol: Well, enough talk: let’s test my second version of array addition:

|gravity> irb

require "array_try_addition2.rb"
true

al = [1, 2, 3]

156 CHAPTER 13. OVERLOADING THE + OPERATOR

[1, 2, 3]

a2 = [5, 6, 7]
[6, 6, 7]

a =al + a2
[6, 8, 10]
quit

Dan: I like this a whole lot better! And I’'m glad Matsumoto did not introduce
four parentheses to add two things.

Carol: I like it too, but I'm afraid we can’t leave things like this.
Dan: Why not?

Carol: Because we’ve now been tinkering with the Array class, we can no longer
use arrays in the standard way. That’s why not.

Erica: Ah, you mean that we can no longer concatenate arrays, the way we
saw before, using the + method. What did we do again? It was something like
this:

|gravity> irb
al = [1, 2, 3]

(1, 2, 3]
a2 = [4, 5, 6]
[4, 5, 6]

a =al + a2
(1, 2, 3, 4, 5, 6]
quit

Dan: Of course, that no longer will work, when we add our modification:

|gravity> irb
require "array_try_addition2.rb"

true

al = [1, 2, 3]
[1, 2, 3]

a2 = [4, 5, 6]
[4, 5, 6]

a =al + a2
[6, 7, 9]

quit

But who cares? I don’t expect us to have much use for array concatenation
anyway.

13.9. A VECTOR CLASS 157

Carol: Ah, not so quick. I think you should care a lot! If you use any Ruby
program, written by someone else, you don’t know what that program relies on.
Most likely some Ruby programs do rely on the default way of array addition,
in the form of concatenation. If you're going to change the default rules, you're
likely to invite disaster.

When we introduced the new plus method, there was no danger, since we left
the existing methods, such as +, alone. That’s fine. But tinkering with existing
methods is simply a bad idea.

13.9 A Vector Class

Dan: Is there no way out? I like what we’ve done, and it would be a pity to
give it up, now that we’ve just figured out how to do it.

Carol: Yes, there is a way. What we want to do is to introduce a new class,
similar to the Array class, but with a different name and with somewhat different
rules. To be precise, we want to define a vector class. Ruby has the convention
that class names start with a capital, so a natural name for our new class would
be Vector.

In principle, we could define our new class from scratch, but it would be a lot
easier to use the features that the Array class already has. All we really want
to do is to tame the Array class to behave like proper physical vectors, and
we can do this by redefining only some of the array operations, such as adding
two arrays, as we have just done, and multiplying an array with a scalar, and
probably a few more such operations.

In Ruby, just like in C++ and many other object-oriented languages, we can
do this by an approach called inheritance. Instead of just defining a new class

class Vector
we can write
class Vector < Array

which means that the new Vector class inherits all the features of the existing
class Array. The Vector class is then called a subclass of the Array class, and
the Array class is called a superclass of the Vector class.

Okay, let me see whether I can redefine the array addition operator, so that
vectors can be added in the right way. From what I've seen so far, I guess that
Ruby wants us to write something like this, in file vector_try_addition2.rb,
to replace array_try_addition2.rb:

158 CHAPTER 13. OVERLOADING THE + OPERATOR

class Vector < Array
def +(a)
sum = Vector.new
self.each_index{|k| sum[k] = self[k]+alk]}
sum
end
end

This new class definition so far contains only one new method, by the name of
+, that is doing the addition. Note that I create an empty new vector by writing
Vector.new instead of [], the notation we used to create a new array. In fact,
[1 is simply syntactic sugar for Array.new. So therefore it is a straightforward
change to replace it by Vector.new as I've done above.

We can use this new class in the same way as we did before, but there is
one difference: we have to declare all objects we will play with to be vectors.
Before, we declared objects as arrays by using the [] notation, which is really a
shorthand for Array[]. Now we have to specify that they are vectors by writing
Vector[]. At least I think that’s how it works. Let’s try:

|gravity> irb

require "vector_try_addition2.rb"
true

vl = Vector[1, 2, 3]

[1, 2, 3]

v2 = Vector[5, 6, 7]

[5, 6, 7]

v =vl + v2

[6, 8, 10]

quit

Dan: That seems to do the right thing. And I guess we have now left the Array
class alone, without changing it in any way, right?

Carol: Yes, but let us test that as well:

|gravity> irb

require "vector_try_addition2.rb"
true

al = [1, 2, 3]

1, 2, 3]

a2 = [5, 6, 7]

[5, 6, 7]

a=al + a2

[1, 2, 3, 5, 6, 7]

quit

13.9. A VECTOR CLASS 159

Dan: Good. So we're now playing it safe.

160 CHAPTER 13. OVERLOADING THE + OPERATOR

Chapter 14

A Vector Class with + and -

14.1 Vector Subtraction

Erica: Well, Carol, you’ve pulled a really neat trick. What a difference, being
able to add vectors by writing

v =vl + v2
rather than

v=1[]
vl.each_index{|k| v[k] = vi[k] + v2[k]}

Dan: Thanks, Carol! You've just made our life a whole lot easier.

Carol: Not quite yet; I'll have to do the same thing for subtraction, multiplica-
tion and addition as well. And I'm sure there are a few more things to consider,
before we can claim to have a complete Vector class. But I, too, am encouraged
with the good start we’ve made!

T’ll open a new file vector_try_add_sub.rb. First thing to add, after addition,
is subtraction. That part is easy:

class Vector < Array
def +(a)
sum = Vector.new
self.each_index{|k| sum[k] = self[k]+alk]}
sum
end
def -(a)

161

162 CHAPTER 14. A VECTOR CLASS WITH + AND -

diff = Vector.new
self.each_index{|k| diff[k] = self[k]-alk]}
diff
end
end

Erica: So now we can write v = vl + v2 and v = vl - v2 But what about v
= -v1? Or even just v = v1? Would that work too?

Carol: Good question! Probably not. But before getting into the why not,
let’s play with irb and see what happens:

lgravity> irb
require "vector_try_add_sub.rb"

true

vl = Vector[1, 2, 3]
[1, 2, 3]

v2 = Vector[5, 6, 7]
[6, 6, 7]

v = vl + v2

[6, 8, 10]

v =vl - v2

[-4, -4, -4]

v = vl

[1, 2, 3]

v = -vl

NoMethodError: undefined method ‘-@’ for [1, 2, 3]:Vector
from (irb):7

from :0

quit

Dan: Huh? A method by the name of a minus sign followed by an @ symbol?
That’s the strangest method name I've ever seen. And what can it mean that
it is undefined? Should it be defined?

Erica: At least writing v = v1 worked. So we’ve come halfway!

Dan: Ah, but would it also work if we would write v = +v1? Let me try:

|lgravity> irb
require "vector_try_add_sub.rb"

true
vl = Vector[1, 2, 3]
(1, 2, 3]

v2 = Vector[5, 6, 7]

14.2. UNARY + 163

[5, 6, 71

v = +vl

NoMethodError: undefined method ‘+@’ for [1, 2, 3]:Vector
from (irb):4

from :0

quit

Aha! You see, we're not even half-way yet. Neither of the two work. But it’s
intriguing that we get a similar error message, this time with a plus sign in front
of the mysterious @ symbol.

14.2 Unary +

Carol: Let me consult the Ruby manual. Just a moment . . . aha, I see! Well,
this is perhaps an exception to Ruby’s principle of least surprise. The manual
tells me that -@ is the Ruby notation for a unary minus, and similarly, +@ is the
Ruby notation for a unary plus.

Dan: A unary minus?

Carol: Yes, and the word ‘un’ in unary here means ‘one,’ like in ‘unit.” A unary
minus is an operation that has only one operand.

Erica: As opposed to what?

Carol: As opposed to a binary minus. Most normal operations, such as addition
and subtraction, as well as multiplication and division, are binary operation.
Binary here means two operands. When you use a single plus sign, you add two
numbers. Similarly, a minus allows you to subtract two numbers. So when you
write 5 - 3 = 2 you are using a binary minus. However, when you first write x
= 5 and then y = -x, to give y the value -5, you are using not a binary minus,
but a unary minus. The construction -x returns a value that has the value of
the variable x, but with an additional minus sign.

Dan: So you are effectively multiplying x with the number -1.
Erica: Or you could say that you are subtracting x from 0.

Carol: Yes, both statements are correct. But rather than introducing multipli-
cation, it is simpler to think only about subtraction. So writing -x uses a unary
minus, while writing 0-x uses a binary minus, while both are denoting the same
result.

Dan: But why does Ruby use such a complicated symbol, -@, for unary minus?
Carol: That symbol is only used when you redefine the symbol.

Here, let me try it out, in a new file vector_try unary.rb. And I may as
well start with the unary plus, since that seems the simplest of the two unary
operations.

164 CHAPTER 14. A VECTOR CLASS WITH + AND -

We have just redefined the binary plus as follows:

def +(a)
sum = Vector.new
self.each_index{|k| sum[k] = selfl[k]+al[k]}
sum

end

We can now use the +@ symbol to redefine also the unary plus for the same
Vector class:

def +Q@
self
end

When we use it, we don’t have to add the @ symbol, which is only used in the
definition, to make the necessary distinction between the unary and binary plus.

Dan: That’s it? You just return the vector itself? I guess it makes sense, but
it seems almost too simple. Let’s try it out:

|gravity> irb
require "vector_try_unary.rb"

true

vl = Vector[1, 2, 3]
[1, 2, 3]

v = +vl

[1, 2, 3]

quit

Good! Now what about unary minus?

14.3 Unary -

Carol: What about it?

Dan: My first guess would be to let the method return -self but that’s too
simple, I'm sure . . .

Carol: Yes, that would beg the question! By writing -self you are trying to
invoke the very method you are trying to define. That certainly won’t work.
But, hey, remember our friend map, which maps an operation on all elements of
an array? Well, because the Vector class inherits the Array class, any method
working for an array will work for a vector as well, so here we go:

14.4. AN UNEXPECTED RESULT 165

def -0
self .map{|x| -x}
end

And here is the reality check:

|gravity> irb
require "vector_try_unary.rb"

true

vl = Vector[1, 2, 3]
[1, 2, 3]

v = -vl

[-1, -2, -3]

quit

Dan: It’s real. Congratulations!
Erica: Can you compose these operations arbitrarily?

Carol: Of course you can. The syntax is the same, we have only overloaded
the + and - operators; the way you can combine them is the same as in normal

arithmetic.

Erica: Let me try:

|gravity> irb
require "vector_try_unary.rb"

true

vl = Vector[1, 2, 3]
[1, 2, 3]

v2 = Vector[5, 6, 7]
[6, 6, 7]

v = -((-v1) + (+v2))

NoMethodError: undefined method ‘-@’ for [-1, -2, -3, 5, 6, 7]:Array

from (irb):4
from :0
quit

14.4 An Unexpected Result

Dan: So much for normal arithmetic.

166 CHAPTER 14. A VECTOR CLASS WITH + AND -

Carol: That is very unexpected, I must say. What does the error message say?
It talks about a very long array, with six components. Wait a minute, it should
only talk about vectors. It seems that not all of our vectors are really members
of the Vector class. Could it be that some of them are still Array members?

Erica: Easy to test:

|gravity> irb
require "vector_try_unary.rb"
true

vl = Vector[1l, 2, 3]
[1, 2, 3]

v2 = Vector[5, 6, 7]
[6, 6, 7]

vl.class

Vector

v2.class

Vector

(+v2) .class

Vector

(-v1).class

Array

quit

Carol: Aha! Unexpected, yes, but it all makes sense. For the unary plus
method, we just returned self, the object itself, which already is a member of
the Vector class. But the way I wrote the unary minus, things are more tricky:

def -0
self .map{|x| -x}
end

You see, self is a instance of the Vector class, which inherits the Array class,
and thereby inherits all the methods of the Array class. But now the question
is: what does a method such as map do? It is a member of the Array class,
something that Ruby folks write as Array#map in a notation that I find some-
what confusing, but we’ll have to get used to it. So, what Array#map does, and
the only thing it can do, is to return an Array object.

Erica: And not a Vector object. Got it! So all we have to do is to tell the
result of the Array#map method to become a Vector.

But wait a minute, we can’t do that. We want to pull off a little alchemy here,
turning an Array into a Vector. But doesn’t this mean that the Array class
has to learn about vectors?

14.5. CONVERTING 167

14.5 Converting

Carol: Well, I may have a lead here. In Ruby, you will often see something like
to_s as a method to write something as a string. Or more precisely, to convert
it into a string.

Dan: What does it mean to convert something? Can you give a really simple
example?

Carol: The simplest example I can think of is the way that integers are being
converted into floating point numbers. I'm sure you're familiar with it. If you
specify a multiplication like 3.14 * 2 to get an approximate result for 27, the
floating point number 3. 14 will try to make the fixed point number 2, in integer,
into a floating point number first.

In other words, 3.14, an object that is an instance of the class Float, will try
to convert the number 2, an object that is an instance of the class Fixnum, into
an instance of the class Float. To say it in simple terms: 3.14 will convert 2
into 2.0 and since it knows how to multiply two floating point numbers, it can
then happily go ahead and apply its multiplication method.

Dan: I see. I guess I never worried about what happened when I write some-
thing like 3.14 * 2; I just expect 5.28 to come out.

Carol: 6.28.
Dan: Oops, yes, of course. But you see what I mean.

Carol: I agree, normally there is no reason to think about those things, as long
as we are using predefined features that hopefully have been tested extensively.
But now we are going to define our own objects, vectors, and we’d better make
sure that we’re doing the right thing.

Erica: You mentioned the to_s method.

Carol: Yes, for each class XXX that has a method to_s defined, as XXX#to_s, we
can use to_s to convert an object of class XXX into an object of class String.

Here, let me show you:

|gravity> irb
3

3

3.class
Fixnum
3.to_s

|I3l|
3.to_s.class
String

3.14

3.14

168 CHAPTER 14. A VECTOR CLASS WITH + AND -

3.14.class
Float

3.14.to_s
"3.14"
3.14.to_s.class
String

quit

Erica: Ah, so the "..." notation already shows that we are dealing with a
character string, or string for short, and indeed, the class of "..." is String.
That makes sense.

So you want to do something similar with vectors, starting with an array and
then converting it into a vector, with a method like to_v.

Carol: Exactly! And I like the name you just suggested. So we have to define
a method Array.to_v. Then, once we have such a method, we can use it to
create a vector by writing

v =[1, 2, 3].to_v

14.6 Augmenting the Array Class

Erica: But how can we define to_v? Somebody else already has defined the
Array class for us. I guess we’ll have to dig into wherever Ruby is defined, and
change the Array class definition?

Carol: No digging needed! The neat thing about Ruby, one of the neat things,
is that it allows you to augment a class. Even if someone else had defined a
class, we can always add a few lines to the class definition, for example, when
we want to add a method. The different bits and pieces of the class definition
can live in different places. Nothing to worry about!

It should be simple. Let me copy our previous vector_try_unary.rb into a new
file vector_try.rb. Hopefully we're getting closer to the real thing!

Here is my first attempt to augment the Array class:

class Array
def to_v
Vector [*self]
end
end

And now, keeping my fingers crossed:

14.6. AUGMENTING THE ARRAY CLASS

|gravity> irb
require "vector_try.rb"
true

[1, 2, 3].class
Array

[1, 2, 3].to_v.class
Vector

vl = Vector[1, 1, 1]
[1, 1, 1]

v2 = [1, 2, 3].to_v
[1, 2, 3]

v =vl + v2

[2, 3, 4]

v.class

Vector

quit

169

Erica: Your hope was justified: to_v does indeed seem to produce genuine
vectors. How nice, that we have the power to add to the prescribed behavior of

the Array class!

Dan: It may be nice, but I'm afraid I don’t understand yet how to_v works.
You are returning a new vector, and that new vector should have the same
numerical components as the original array, self, right? Now what is that

little star doing there, in front of self?

Carol: Ah, that’s a way to liberate the components. We have seen that we can

create an array by writing
[1, 2, 3]
which you can view as a shorthand for

Array[1, 2, 3]

where the Array[] method receives a list of components and returns an array

that contains those components.

Now for our vector class we can similarly write:

Vector[1, 2, 3]

in order to create vector [1, 2, 3].

Now, let me come back to your question. If I start with an Array object [1,

2, 3], which internally is addressed by self, and if I then were to write:

170 CHAPTER 14. A VECTOR CLASS WITH + AND -

Vector [self]
that would be translated into
Vector[[1, 2, 3]]
Dan: I see: that would be a vector with one component, where the one com-

ponent would be the array [1, 2, 3]. Got it. So we have to dissolve one layer
of square brackets, effectively.

Carol: Indeed. And here is where the * notation comes in. Let me show you:

|gravity> irb
a=[1, 2, 3]
[1, 2, 3]

b = [al

[f1, 2, 311
c = [*al

[1, 2, 3]
quit

14.7 Fixing the Bug

Erica: So now we can go back and fix the bug in our unary minus.

Carol: Ah, yes, that’s how we got started. Okay, we had in file vector_try_unary.rb:

def -0
self .map{|x| -x}
end

In our new file, vector_try.rb, I can now make this:

def -Q@
self .map{lx| -x}.to_v
end

Dan: Shall we repeat our old trial run? Here we go:

14.7. FIXING THE BUG 171

|gravity> irb
require "vector_try.rb"

true

vl = Vector[1, 2, 3]
[1, 2, 3]

v2 = Vector[5, 6, 7]
[5, 6, 71

v = =((-v1) + (+v2))
[-4, -4, -4]

quit

Great! Okay, now we have really covered a complete usage of + and - for vectors,
the unary and binary forms for each of them.

172 CHAPTER 14. A VECTOR CLASS WITH + AND -

Chapter 15

A Complete Vector Class

15.1 Vector Multiplication

Carol: Which means it is time to move on to multiplication. But here we have
another problem: there is multiplication and then there is multiplication.

Dan: You mean?

Carol: We can multiply a vector with a scalar number; for a vector
v = [1, 2, 3]

we would like to see multiplication by two giving us:
2 xv=[2, 4, 6]

But in addition (no pun intended) we want to form an inner product of two
vectors. In particular, we would like to get the square of the length of a vector
by forming the inner product with itself:

v ok v = 2%2 + 4x4 + 6%6 = 56

Or more generally, for
w = [10, 10, 10]

we want to be able to take the inner product of v and w to give us:
v * w = 2%x10 + 4*%x10 + 6%10 = 120

173

174 CHAPTER 15. A COMPLETE VECTOR CLASS

We could of course define different method names for these two operations, like
multiply_scalar and inner_product, but something tells me that we will be
happier using * for both.

Dan: Certainly I will be happier that way!
Carol: Well, how about this, in vector_try.rb:

def *(a)
if a.class == Vector # inner product
product = 0
self.each_index{|k| product += self[k]xal[k]}
else
product = Vector.new # scalar product
self.each_index{|k| product[k] = self [k]*a}
end
product
end

Time for a workout:

|gravity> irb
require "vector_try.rb"
true

vl = Vector[1, 2, 3]
[1, 2, 3]

v2 = Vector[5, 6, 7]
[6, 6, 7]

vl * 3

[3, 6, 9]

vl * vi

14

vl * v2

38

vl *x v2 * 3

114

vl * 3 * v2

114

quit

15.2 An Unnatural Asymmetry

Dan: So far so good, but why do you put the number 3 only at the end and in
the middle, why not in front? That would seem more natural! Let me try:

15.3. VECTOR DIVISION 175

|gravity> irb

require "vector_try.rb"
true

vl = Vector[1, 2, 3]
[1, 2, 3]

vl * 3

[3, 6, 9]

3 *x vl

TypeError: Vector can’t be coerced into Fixnum
from (irb):4:in ‘%’
from (irb):4

from :0

quit

Hmmm, I guess not.

Carol: Yes, it would be more natural, but it doesn’t work. Do you see why?
Remember, when we write v2 * 3 we invoke the * method of the vector object
v2. I understand that you would like to write 3 * v2, but in that case you have
a problem: you would be trying to invoke the * method of the number object 3

Erica: That’s all and well, as a formal explanation, but if you can only write
[1, 2, 3] * 3 and never 3 * [1, 2, 3], I'm not very happy with it. The
whole point was to make our life easier, and to make the software notation
more natural, more close to what you would write with pen and paper . . .

Dan: I agree. Half a solution is often worse than no solution at all. Perhaps
we should just return to our earlier component notation.

Carol: I can’t argue with that. But I'm not yet willing to give up. I wonder
whether there is not some sort of way out. Let me see whether I can find
something.

15.3 Vector Division

Erica: For now at least, let’s finish the job we started . . .

Carol: . . . which means that we have to add a division method as well. In
the case of division, we only have to deal with scalar division.

Erica: Ah, yes, of course, you have an inner product, but not an inner quotient.

Carol: Well, not completely ‘of course’, there is something called ‘geometric
algebra’. If you’re curious, you can search for it on the internet.

Dan: I’'m not curious, let’s move on.

Carol: Okay, so I will punish attempts to divide two vectors by letting an error

176 CHAPTER 15. A COMPLETE VECTOR CLASS

message appear. In Ruby you can use the command raise to halt execution
and display an error message:

def /(a)
if a.class == Vector
raise
else
quotient = Vector.new # scalar quotient
self.each_index{|k| quotient[k] = self[k]/a}
end
quotient
end

A quick check:

|gravity> irb

require "vector_try.rb"

true

vl = Vector[1l, 2, 3]

[1, 2, 3]

v2 = Vector[5, 6, 7]

[6, 6, 7]

vl / 3.0

[0.333333333333333, 0.666666666666667, 1.0]
v2 / 0.5

[10.0, 12.0, 14.0]

vl / v2

RuntimeError:

from ./vector_try.rb:41:in ‘/°’
from (irb):6

from :0

quit

You see, we got a run time error, because the raise statement had the effect of
raising an error, as it is called in Ruby.

15.4 The Score: Six to One

Erica: Let me see whether I can sum up what we’ve learned. We've success-
fully implemented seven legal operations, unary/binary addition/multiplication,
scalar/vector multiplication and scalar division.

15.5. A SOLUTION 177

Of these seven, six are okay. It is only with scalar multiplication that we en-
counter a problem, namely a lack of symmetry.

Dan: Can you define ”"okay” for the other six?

Erica: I will be explicit. T will use a notation where vl and v2 are vectors,
and s is a scalar number, which could be either an integer or a floating point
number. I will call something ”well defined” if it gives a specific answer, and
not an error message.

Here is the whole list of the six operations that I am now considering ”okay”:
1) unary plus: +v1 is okay, because it is well defined.
2) unary minus: -v1 is okay, because it is well defined.

3) binary plus: v1 + v2 is okay, because both v1 + v2 and v2 + v1 are well
defined, and both give the exact same answer, as they should.

4) binary minus: vl - v2 is okay, because both v1 - v2 and v2 - v1 are well
defined, and both give the exact opposite answer, as they should.

5) vector times: vl * v2 is okay, because both vl * v2 and v2 * v1 are well
defined, and both give the exact same answer, as they should.

6) scalar slash: vl / s is okay, because it is well defined. The alternative, s
/ v1 is not defined, and will give an error message. However, that’s perfectly
okay too, because we have decided that we don’t allow division by vectors.

So far, the score is six to zero, and we seem to be winning. The problem is that
we are losing in the case of number 7:

7) scalar times: v1 * s is okay, because it is well defined. The alternative, s *
vl should give the same answer too, but unfortunately, in our implementation
it is not defined, and in fact, as we have seen, it gives an error message.

Dan: Thanks, Erica, that’s a very clear summary. So all we have to do, to save
the day, is to repair s * v1, so that it gives a well defined result, and in fact
the same result as vl * s.

15.5 A Solution

Carol: Ah, of course! How stupid, we should have thought about it right away!
Dan: About what?

Carol: Class augmentation! We can just augment the number classes, telling
them how to multiply with vectors! Just as we have already augmented the
array class, telling it how to convert an array into a vector.

Dan: I don’t see that. What exactly are you trying to repair?

Carol: Let’s go back to square one. We wanted to make our scalar-vector

178 CHAPTER 15. A COMPLETE VECTOR CLASS

multiplication symmetric. The problem was, when you have a vector v and you
want to write

3 *x v

you are effectively asking the number 3 to provide a method that knows how to
handle multiplication of 3 with a vector. But the poor number 3 has never heard
of vectors! No wonder we got an error message. Let me show again explicitly
what the error message says:

|gravity> irb

require "vector_try.rb"
true

v = Vector[1, 2, 3]

[1, 2, 3]

v *x 3

[3, 6, 9]

3 *x v

TypeError: Vector can’t be coerced into Fixnum
from (irb):4:in ‘%’
from (irb):4

from :0

quit

You see: it tells us that the number 3 expects to make a multiplication with
something like another number. It tries to convert a vector into such an other
number, but doesn’t succeed.

Erica: So, what we really would like to do is to augment the rules for the class
Fixnum, which is the class of integers, to explain how to multiply with an object
of class Vector. We can then do the same for the class Float, the class of
floating point numbers.

15.6 Augmenting the Fixnum Class

Carol: Indeed. Well, there is no stopping us now to add to the behavior of the
Fixnum class! Here we go, in vector.rb:

class Fixnum
alias :original_mult :*
def *(a)
if a.class == Vector
axself
else

15.6. AUGMENTING THE FIXNUM CLASS 179

original_mult(a)
end
end
end

Dan: Whoa! That’s quite a bit more complicated than I had expected. You
must have been reading Ruby manuals lately!

Carol: I admit, I did. Here is what happens. If we start with the number 3,
and take a vector v, and write

3 *xv

then the * method of the fixed point number 3 first checks whether v is a Vector.
In our case, it is, so then it returns the result

v * self
which in the case of 3 is simply
v x 3

and that is something we have already defined, in the Vector class.

If, on the other hand we write anything else, such as
3 *x 8.5

then the * method of the fixed point number 3 finds that 8.5 is not a Vector,
so it applies the original definition of multiplication, to the number 8.5, as it
should.

Dan: So the alias notion means that whatever the original * did is now
assigned to original mult instead?

Carol: Exactly. Writing alias :x :y means that x becomes an alias for y. Or
so the theory goes. Let’s see what the practice tells us:

|gravity> irb
require "vector.rb"

true

v =1[1, 2, 3].to_v
[1, 2, 3]

v x 3

[3, 6, 9]

180

(v * 3).class
Vector

3 xv

[3, 6, 9]

(8 * v).class
Vector

quit

CHAPTER 15.

A COMPLETE VECTOR CLASS

15.7 Augmenting the Float Class

Dan: Not bad! Great! 3 * v now produces the exact same thing as v * 3.
Congratulations! Another hope fulfilled. And I guess you should do the same
thing for floating point numbers, right?

Carol: Right. All very similar:

class Float

alias :original_mult

sk

def *(a)
if a.class == Vector
axself
else
original_mult(a)
end
end

end

This time my hope for success will be quite justified:

|gravity> irb

require "vector.rb"

true

v =1[1, 2, 3].to_v
[1, 2, 3]

v *x 3.14

[3.14, 6.28, 9.42]
(v * 3.14) .class
Vector

3.14 x v

[3.14, 6.28, 9.42]
(8.14 * v).class
Vector

quit

15.8. VECTOR CLASS LISTING 181

And indeed, it all comes out the way it should. So I declare victory: I'm very
pleased with our vector class.

15.8 Vector Class Listing

Erica: Let’s get the whole listing on the screen. Here it is. In fact, it is shorter
than I thought, for all the things it does:

class Vector < Array
def +(a)
sum = Vector.new
self.each_index{|k| sum[k] = self[k]+a[k]}
sum
end
def -(a)
diff = Vector.new
self.each_index{|k| diff[k] = self [k]-al[k]}
diff
end
def +Q@
self
end
def -@
self .map{Ix| -x}.to_v
end
def *(a)
if a.class == Vector # inner product
product = 0
self.each_index{|k| product += self[k]*al[k]}
else
product = Vector.new # scalar product
self.each_index{|k| product[k] = self [k]*a}
end
product
end
def /(a)
if a.class == Vector
raise
else
quotient = Vector.new # scalar quotient
self.each_index{|k| quotient[k] = self[k]/a}
end

182 CHAPTER 15. A COMPLETE VECTOR CLASS

quotient
end
end

class Array
def to_v
Vector [*self]
end
end

class Fixnum
alias :original_mult :*

def *(a)
if a.class == Vector
axself
else
original_mult(a)
end
end
end

class Float
alias :original_mult :*

def *(a)
if a.class == Vector
axself
else
original_mult(a)
end
end
end

15.9 Forward Euler in Vector Form

Dan: The whole point of this long exercise was to make our codes more readable.
Here is one of the array versions we made of our first code, the forward Euler

version, in euler_array_each_def.rb:

include Math

def print_pos_vel(r,v)
r.each{|x| print(x, " ")}
v.each{|x| print(x, " ™)}

15.9. FORWARD EULER IN VECTOR FORM

print "\n"
end
r = [1, 0, 0]
v = [0, 0.5, 0]
dt = 0.01

print_pos_vel(r,v)

1000.timesq{
r2 =0
r.each{|x| r2 += x*x}
r3 = r2 x sqrt(r2)
a = r.map{l|x| -x/r3}
r.each_index{|k| r[k] += v[k]*dt}
v.each_index{|k| v[k] += a[k]*dt}
print_pos_vel(r,v)

183

What would that look like in vector form?

Carol: To start with, we’ll have to require the file vector.rb. We also have
to convert the arrays into vectors, using .to_v. Then, in the loop, we can use
our vector versions of addition, unary minus, multiplication and division. Let

me write it all in file euler_vector.rb:

require "vector.rb"
include Math

def print_pos_vel(r,v)

r.each{|x| print(x, " ")}
v.each{|x| print(x, " ")}
print "\n"

end

r =[1, 0, 0].to_v
v = [0, 0.5, 0].to_v
dt = 0.01

print_pos_vel(r,v)
1000. times{

r2 = T*r

r3 = r2 x sqrt(r2)
a=-r/r3

r += v*dt

v += ax*dt

184 CHAPTER 15. A COMPLETE VECTOR CLASS

print_pos_vel(r,v)

}

Dan: Wait a minute, we haven’t define += yet!

Carol: Ah, you see, that’s a nice feature of operator overloading in Ruby: once
you redefine + the same redefinition applies to derivative expressions such as +=.

Dan: That’s nice, if it really works. Let’s compare the run with the old results:

|gravity> ruby euler_array_each_def.rb | tail -1
7.6937453936572 -6.27772005661599 0.0 0.812206830641815 -0.574200201239989

|gravity> ruby euler_vector.rb | tail -1
7.6937453936572 -6.27772005661599 0.0 0.812206830641815 -0.574200201239989

Wonderful. And I must say, the code does look a lot cleaner now.

Erica: Definitely. This is a lot more pretty. What a difference! None of all
those ugly [k] occurrences anymore. I think it was worth all the work we put
in, defining a Vector class.

0.

0.

Chapter 16

A Matter of Speed

16.1 Slowdown by a Factor Two

Dan: Clean and pretty, sure, but is it fast enough? Let’s compare the speed of
the old code and the new vector code. I wonder whether all this fancy vector
stuff is affecting execution speed.

Carol: We can use the time command, to find out how much time a code spends
before finishing. We can redirect the standard output to /dev/null, literally
a null device, effectively a waste basket. This is a Unix way of throwing the
ordinary output away, the output that appears on the standard output channel.
In that way, we are left only with output that appears on the standard error
channel, such as timing information provided by the time command.

Let me run all three forward Euler codes, the original version we wrote, the
array version, and the vector version:

|gravity> time ruby euler.rb > /dev/null

0.052u 0.003s 0:00.06 83.3%0+0k 0+0io Opf+0w

|gravity> time ruby euler_array_each_def.rb > /dev/null
0.118u 0.001s 0:00.13 84.6%0+0k 0+0io Opf+0w

|gravity> time ruby euler_vector.rb > /dev/null

0.205u 0.004s 0:00.22 90.9%0+0k 0+0io Opf+O0w

Dan: It seems that using our nifty vector notation, we get a penalty in speed of
a factor two. But before jumping to conclusions, can we check once more that
we are really doing the same calculations in all three cases?

Carol: Sure, here are the last lines of all three calculations:

185

186 CHAPTER 16. A MATTER OF SPEED

|gravity> ruby euler.rb | tail -1

7.6937453936572 -6.27772005661599 0.0 0.812206830641815 -0.574200201239989
|gravity> ruby euler_array_each_def.rb | tail -1

7.6937453936572 -6.27772005661599 0.0 0.812206830641815 -0.574200201239989
|gravity> ruby euler_vector.rb | tail -1

7.6937453936572 -6.27772005661599 0.0 0.812206830641815 -0.574200201239989

Dan: Good! And now I have another question. Presumably even the first
version is slower than an equivalent code written in Fortran or C or C++. 1
would like to know how much slower.

16.2 A C Version of Forward Euler

Carol: That’s a good idea. Given that our first code, euler.rb, is rather sim-
ple, it should be easy to translate it into C. And to make the time measurement
a bit more precise, I’'ll make the time step a hundred times smaller, so that we
let the code make a hundred thousand steps.

Finally, we are interested now in execution speed, and for now at least we don’t
worry about the cost of frequent outputs. After all, when we switch to the real
N-body problem, for N > 2, the total costs will be dominated by inter-particle
force calculations, not by print statements.

Here is the C version, for 100,000 steps, with only one output at the end, in file
euler_100000_steps.c:

#include <stdio.h>
#include <math.h>

int main()

{
double r[3], v[3], al3];
double dt = 0.0001;
int ns, k;

r[0] =1
r[1] =0
r[2] =0
v[0] = 0;
v[1] = 0
v[2] =0

for (ns = 0; ns < 100000; ns++){
double r2 = r[0]*r[0] + r[1lxr[1] + r[2]*r[2];

0.

0.

0.

16.2. A C VERSION OF FORWARD EULER 187

for (k = 0; k < 3; k++)
alkl] = - rlk]l / (r2 * sqrt(r2));
for (k = 0; k < 3; k++){
r[k] += v[k] * dt;
v[k] += alk] * dt;
}
}
printf("%.15g %.15g %.15g %.15g %.156g %.15g\n",
r[0], r[1], r[2], v[0], v[1], v[2]);

Let me compile and run it:

|gravity> gcc -o euler_100000_steps euler_100000_steps.c -1lm

|gravity> time euler_100000_steps
0.292716737827072 0.382907748579753 0 -1.56551896976935 -0.313957063866527 0

0.065u 0.001s 0:00.08 75.0%0+0k 0+0io Opf+O0w

Dan: Pretty fast indeed! But you really should compile it with the optimizer
flag -0, to bring out the real speed that C is capable off.

Carol: Good point! Here goes:

|gravity> gcc -0 -o euler_100000_steps euler_100000_steps.c -1m

|gravity> time euler_100000_steps
0.292716737827197 0.382907748579793 0 -1.56551896976913 -0.313957063866306 0

0.036u 0.000s 0:00.03 100.0%0+0k 0+0io Opf+Ow

Dan: Even faster. One and a half times faster, it seems, but we can’t really be
sure, given the limited accuracy of the timing output. In any case, the C code
really flies!

Erica: Note that the output values differ in the last few significant digits. That
must be because optimization causes a different order of arithmetic operations,
which means that the roundoff errors are different too. Since we are taking a
hundred thousand steps, it is perhaps not so strange that we are losing several
digits in accuracy.

Dan: Time to compare these results with the Ruby code. I have this sinking
feeling that it will be muuuuuch slower.

188

16.3

CHAPTER 16.

A Simple Ruby Version

A MATTER OF SPEED

Carol: You are probably right. Here is the simplest forward Euler version, also
with only one output statement at the end, in euler_100000_steps.rb:

include

x =1
y=0
z =0
VX =
vy
vz =
dt =

O O O O

100000
r2 =
r3 =
ax =
ay =
az =
X +=
y =
z +=
VX +=
vy +=
vz +=

}

print(x

print (v

Math

.0001

.times{

X*kx + y*y + zZ*xz
r2 * sqrt(r2)

-x/ r3
-y / 13
-z / r3

vx*dt
vy*dt
vz*xdt

axx*dt
ay*dt
az*xdt

n
B

X, n

s Yo

>

vy,

and here is the timing result:

lgravity> time ruby euler_100000_steps.rb
0.292716737826681
1.859u 0.007s 0:02.14 86.4%0+0k 0+0io Opf+Ow

0.38290774857968 0.0

-1.56551896976999

-0.313957063867402 O

Dan: A dramatic difference. As far as we can see here, Ruby is at least thirty
times slower than C!

Erica: That’s a bit of a shock.

Carol: Yes, I knew that Ruby would be slow, but I didn’t expect it to be quite
that slow. Well, at least C and Ruby give the same output results, apart from

16.4.

A RUBY ARRAY VERSION

189

the last few digits, which change anyway in C when we switch on optimization,
as we have seen. So as far as what it is the same between the optimized and

unoptimized C results, Ruby produces that part exactly.

Dan: Let’s complete the exercise and make similar versions for arrays and

vectors.

16.4

A Ruby Array Version

Carol: Here is the array version, in euler_array_100000_steps.rb:

include Math

def print_pos_vel(r,v)

r.each{|x| print(x, " ")}
v.each{|x| print(x, " ")}
print "\n"

end

r = [1, 0, 0]

v = [0, 0.5, 0]

dt = 0.0001

100000.timesq{
r2 =0
r.each{|x| r2 += x*x}
r3 = r2 x sqrt(r2)
a = r.map{|x| -x/r3}
r.each_index{|k| r[k] += v[k]*dt}
v.each_index{lk| v[k] += a[k]*dt}
}

print_pos_vel(r,v)

and here is what timing gives:

|gravity> time ruby euler_array_100000_steps.rb

0.292716737826681 0.38290774857968 0.0

-1.56551896976999

3.471u 0.047s 0:05.21 67.3%0+0k 0+0io Opf+0w

-0.313957063867402 0.0

Dan: So adding arrays let Ruby slow down by a factor two.

190

CHAPTER 16.

16.5 A Ruby Vector Version

A MATTER OF SPEED

Carol: And here is the vector version, in euler_vector_100000_steps.rb:

require "vector.rb"
include Math

def print_pos_vel(r,v)
r.each{|x| print(x,
v.each{|x| print(x,

print "\n"
end
r=1[1, 0, 0].to_v
v = [0, 0.5, 0].to_v
dt = 0.0001

100000.times{
r2 = T*r
r3 = r2 x sqrt(r2)
a = -r/r3
r += vxdt
v += axdt
}

print_pos_vel(r,v)

|I)}
II)}

and here is how slow it runs:

|gravity> time ruby euler_vector_100000_steps.rb
0.292716737826681 0.38290774857968 0.0
9.061u 0.080s 0:11.47 79.6%0+0k 0+0io Opf+O0w

-1.56551896976999

-0.313957063867402

Dan: And now we’re losing yet another factor of three. That’s pretty terrible!

16.6 More Timing Precision

Carol: Let’s try to get a bit more timing precision. Instead of taking a hun-
dred thousands steps, we can take a million steps, to make the timing com-
parison more accurate. You can guess the names of the files I will create:
euler_1000000_steps.c, euler_1000000_steps.rb, euler_array_1000000_steps.rb

and euler_vector_1000000_steps.rb.

Here are the results:

0

16.7. CONCLUSION 191

|gravity> gcc -o euler_1000000_steps euler_1000000_steps.c -1lm

|gravity> time euler_1000000_steps

0.519970642634788 -0.376817992041735 0 1.17126787143565 0.114700879740638 0
0.459u 0.000s 0:00.48 93.7%0+0k 0+0io Opf+O0w

|gravity> gcc -0 -o euler_1000000_steps euler_1000000_steps.c -1m

|gravity> time euler_1000000_steps

0.519970642633723 -0.376817992041925 0 1.17126787143747 0.114700879739195 0
0.357u 0.000s 0:00.37 94.5%0+0k 0+0io Opf+O0w

|gravity> time ruby euler_1000000_steps.rb
0.519970642634004 -0.376817992041834 0.0 1.17126787143698 0.114700879739653 0.0
16.985u 0.064s 0:18.62 91.5%0+0k 0+0io Opf+0w

|gravity> time ruby euler_array_1000000_steps.rb
0.519970642634004 -0.376817992041834 0.0 1.17126787143698 0.114700879739653 0.0
37.293u 0.144s 0:41.11 91.0%0+0k 0+0io Opf+O0w

|gravity> time ruby euler_vector_1000000_steps.rb
0.519970642634004 -0.376817992041834 0.0 1.17126787143698 0.114700879739653 0.0
95.045u 0.521s 1:55.34 82.8%0+0k 0+0io Opf+O0w

16.7 Conclusion

Dan: This confirms our earlier conclusions. At least on this particular com-
puter, that we are now using to do some speed tests, the unoptimized C version
takes 50% more time than the optimized version, the simplest Ruby version
takes about 50 times more time, the Ruby array version about 100 times more,
and finally the Ruby vector version takes more than 250 times more time than
the optimized C version.

Carol: But even so, for short calculations, who cares if a run takes ten mil-
lisecond or a few seconds? I certainly like the power of Ruby in giving us vector
classes, and a lot more goodies. We have barely scratched the surface of all the

192 CHAPTER 16. A MATTER OF SPEED

power that Ruby can give us. You should see what we can do when we really
start to pass blocks to methods and . . .

Dan: . . . and then we will start drinking a lot of coffee, while waiting for
results when we begin to run 100-body experiments! Is there no way to speed
up Ruby calculations?

Carol: There is. By the time we use 100 particles, we are talking about
102.10%> = 10* force calculations for every time step. This means that the
calculation of the mutually accelerations will take up almost all of the computer
time. What we can do is write a short C code for computing the accelerations.
It is possible to invoke such a C code from within a Ruby code. In that way, we
can leave most of the Ruby code unchanged, while gaining most of the C speed.

Erica: I certainly like the flexibility of a high-level language like Ruby, at least
for writing a few trial versions of a new code. In order to play around, Ruby
is a lot more fun and a lot easier to use than C or C++ or Fortran. After we
have constructed a general N-body code that we are really happy with, we can
always translate part of it into C, as Carol just suggested.

Or, if really needed to gain speed, we could even translate the whole code into
C. Translating a code will always take far less time than developing a code in
the first place. And is seems pretty clear to me that development will be faster
in Ruby.

Dan: I'm not so sure about all that. In any case, we got started now with
Ruby, so let us see how far we get. But if and when we really get bogged down
by the lack of speed of Ruby, we should not hesitate to switch to a more efficient
language.

Carol: Fair enough! Let’s continue our project, and apply our vector formalism
to second-order integration schemes.

Chapter 17

Modified Euler in Vector

Form

17.1 An Easy Translation

Dan: Now that we have a vector version of forward Euler, it’s time to clean up
our modified Euler code as well.

Carol: That will be an easy translation. I will start by copying the old code from
euler modified array.rb into a new file, euler modified vector_tryl.rb.
All we have to do is to translate the code from array notation to vector notation.
Same as what we did with euler_vector.rb. Here it is:

require "vector.rb"
include Math

def print_pos_vel(r,v)
r.each{|x| print(x, "
v.each{|x| print(x, "
print "\n"

end

r [1, 0, 0].to_v
v = [0, 0.5, O].to_v
dt = 0.01
print_pos_vel(r,v)

1000. times{
r2 = r*r
r3 = r2 * sqrt(r2)

ll)}
u)}

193

194 CHAPTER 17. MODIFIED EULER IN VECTOR FORM

a=-r/r3
rl = r + v*dt
vl = v + axdt

r12 = rixril
r13 = r12 * sqrt(ril2)
al = -r1/r13

r2 = rl + vixdt

v2 = vl + alxdt
r=0.5%(r+r2)
v=0.5%(v+v2)
print_pos_vel(r,v)

Erica: What a relief! The lines are shorter, there are fewer lines, but what is
most important: the lines are easy to understand, with a direct correspondence
between code and math.

Let’s trace our history, in this regard. We started off writing with pen and
paper:

ry =r+vdt (17.1)

In our first code this became:

x1 = x + vxxdt
yl =y + vyxdt
zl = z + vzxdt

Then in our array code it became

ri = []
r.each_index{lk| ri[k] = rl[k] + v[k]l*dt}

and finally, in our vector code, we wrote:

rl = r + vxdt

which is very close indeed to what we started out with:

ry =r+vdt (17.2)

17.2. VARIABLE NAMES 195

Dan: It was a lot of work, but now that we got the vector class, I must admit
that the code looks a lot more readable. So I guess this will make life a lot
easier for us. But before we move on, does it give the correct answers?

Carol: Here’s the old result, from the array code:

|gravity> ruby euler_modified_array.rb | tail -1
0.400020239524913 0.343214474344616 0.0 -1.48390077762002 -0.0155803976141248 0.0

and here’s what our new vector code gives:

|gravity> ruby euler_modified_vector_tryl.rb | tail -1
0.400020239524913 0.343214474344616 0.0 -1.48390077762002 -0.0155803976141248 0.0

17.2 Variable Names

Dan: Good! I'm happy.

Erica: But I'm not, at least not completely. Look, in the code we are using the
variable r2 in two very different ways. Early on, we use it to hold the value of
r2, the square of the original variable r, defined as the inner product 72> =r - r.
But later, toward the end of the loop, we use the same variable to hold value of
rit2,p, the predicted value of r; .

I guess Ruby doesn’t mind that we assign completely different values, even with
different types, first a scalar, then a vector. But I sure do mind! And someone
else reading our code from scratch is likely to be confused.

Carol: You have a point there. Okay, how about calling the initial position rq
instead of r? That is more consistent anyway. We can then use the variable
name r0 instead of r for the initial vector, and the scalar value of its square will
then become r02. So there will be no possible confusion anymore! Here is the
new listing, in file euler modified vector_try2.rb:

require "vector.rb"
include Math

def print_pos_vel(r,v)

r.each{|x| print(x, " ")}
v.each{|x| print(x, " ")}
print "\n"

end

196 CHAPTER 17. MODIFIED EULER IN VECTOR FORM

r=1[1, 0, 0].to_v
v = [0, 0.5, 0].to_v
dt = 0.01
print_pos_vel(r,v)

1000.times{
r02 = r*r
r03 = r02 * sqrt(r02)
a = -r/r03
rl = r + vxdt
vl = v + axdt

r12 = rixrl
r13 = r12 * sqrt(ri2)
al = -r1/r13

r2 = rl + vixdt

v2 = vl + alxdt
r=0.5% (r+r2)
v=0.5%(v+v2)
print_pos_vel(r,v)

and here is the test:

|gravity> ruby euler_modified_vector_try2.rb | tail -1
0.400020239524913 0.343214474344616 0.0 -1.48390077762002 -0.0155803976141248

17.3 Consistency

Erica: Yes, that’s better, and you are no longer using the same variable name
for two different things. But you haven’t quite done what you said you would
do, namely calling the initial position rg instead of r. You have only assigned
the square of r to rZ, or r02 in the code.

Carol: That’s because I wanted to continue using the original variables r and
v, to keep track of the evolving code. The alternative would have been to call
the running variables r0 and v0, but that would be misleading, as if the particle
would come back to the original position each time.

Erica: How about a compromise? We can keep the original variables r and v,
but convert them to r0 and v0 at the beginning of the loop. Let me try this, in
file euler modified vector_try3.rb:

17.3. CONSISTENCY

require "vector.rb"
include Math

def print_pos_vel(r,v)

r.each{|x| print(x, " ")}
v.each{|x| print(x, " ")}
print "\n"

end

[1, 0, 0].to_v

v [0, 0.5, 0].to_v
dt = 0.01
print_pos_vel(r,v)

r

1000.timesq{

r0 =r

v = v

r02 = rO0*r0

r03 = r02 * sqrt(r02)
a0 = -r0/r03

rl = r0 + vOx*xdt

vl = vO + a0Ox*dt

rl12 = rix*ril

r13 = r12 * sqrt(rl2)
al = -r1/r13

r2 = rl + vixdt
v2 = vl + alxdt

r=0.5x% (r0+r2)
v=0.5x (v0+v2)
print_pos_vel(r,v)

197

and let me test it right away:

|gravity> ruby euler_modified_vector_try2.rb | tail -1

0.400020239524913 0.343214474344616 0.0

-1.48390077762002

-0.0155803976141248 0.0

Dan: Sure, that is more consistent, but you’ve just made the code two lines
longer! In fact, five lines longer, if you count the three blank lines. Why did

you add blank lines?

198 CHAPTER 17. MODIFIED EULER IN VECTOR FORM

Erica: I'm not really worried about the extra two lines of code. What’s much
more important is that in this new notation we can see clearly that we have a
new target of attack for the DRY principle. Look, the two blocks of code, that
I have highlighted by place blank lines around them, are nearly identical!

17.4 A Method Returning Multiple Values

Carol: Right you are! This calls for a new method. Here, let me try, in file

euler modified_vector.rb:

require "vector.rb"
include Math

def print_pos_vel(r,v)

r.each{|x| print(x, " ")}
v.each{|x| print(x, " ")}
print "\n"

end

def step_pos_vel(r,v,dt)

r2 = T*r
r3 = r2 * sqrt(r2)
a = -r/r3
[r + vxdt, v + a*xdt]
end
r=1[1, 0, 0].to_v
v = [0, 0.5, 0].to_v

dt = 0.01
print_pos_vel(r,v)

1000.times{
rl, vl = step_pos_vel(r,v,dt)
r2, v2 = step_pos_vel(rl,vl,dt)
r=0.5% (r+r2)
v=0.5%(v+v2)
print_pos_vel(r,v)

and I'll test it right away:

|gravity> ruby euler_modified_vector.rb | tail -1

0.400020239524913 0.343214474344616 0.0

-1.48390077762002

-0.0155803976141248

17.5. SIMPLIFICATION 199

Figure 17.1: Two-step implementation of the modified Euler algorithm

Dan: I'm glad it works, but how does it work? It seems that your new method
step_pos_vel returns an array.

Carol: Ah, yes. In Ruby you can return more than one value simultaneously,
and the way to do that is to list them in an array. Then, when you invoke the
method, you can just list the variables to which you want to assign the array
values, in the same order. Very lazy, very simple, and in a way, you might say,
following the principle of least surprise.

Dan: Well, yes, once you realize what is happening.

Erica: And it is quite elegant, I must say. I begin to like Ruby more and more!
The inner loop now has become almost a mathematical formula, rather than a
piece of computer code. You can read it aloud: step forward, step again, and
then average the values from the beginning and the end, both for position and
velocity, and print the results. Wonderful!

17.5 Simplification

Erica: Before we move on, there is something that bothers me, which I no-
ticed as soon as we translated the modified Euler scheme into vector notion,
in euler modified vector_tryl.rb. I had not noticed any problem when we
first wrote the much longer component-based version, but when it became so
compact, I realized that we are being clumsy.

Carol: How so?

Erica: Look, we have effectively implemented figure 17.1, right? Let me sketch
it here again:

We take two steps forward, in order to compute a single improved step.

However, we started off that whole discussion, way back when, we the simpler
figure 17.2. Let me draw that one again too:

200 CHAPTER 17. MODIFIED EULER IN VECTOR FORM

Figure 17.2: One-step implementation of the modified Euler algorithm

You see, in that original figure, we average two steps, in order to compute an
improved step.

Carol: But you needed to compute the upper step, before you could compute
the lower step, so really both ways of drawing the picture involve two steps.

Erica: True, but to me at least the original figure suggests a somewhat simpler
procedure.

Dan: I don’t care to quibble about philosophy of aesthetics. Here is the inner
loop of the first vector version that we wrote for modified Euler:

1000.timesq{

r2 = r*r
r3 = r2 * sqrt(r2)
a=-r/r3

rl = r + vxdt
vl = v + axdt

r12 = rixrl
r13 = r12 * sqrt(ri2)
al = -r1/r13

r2 = rl + vixdt

v2 = vl + alxdt
r=0.5% (r+1r2)
v=0.5%(v+v2)
print_pos_vel(r,v)

Where do you think you can simplify things?

Erica: Let me copy that file, euler modified _vector_tryl.rb, to euler modified _vector_try4.rkt
and let me see whether I can change the loop, to make it look more like my
understanding of the original figure, the second one above:

17.5. SIMPLIFICATION 201

1000.timesq{

r2 = r*r

r3 = r2 * sqrt(r2)
a=-r/r3

rl = r + vxdt

r12 = rixril

r13 = r12 * sqrt(r12)
al = -r1/r13

r += v*dt + 0.5*%axdt*dt
v += 0.56x(a + al)*dt
print_pos_vel(r,v)

Dan: That sure looks a lot simpler. Does it give the same answer?

|gravity> ruby euler_modified_vector_try4.rb | tail -1
0.400020239524793 0.34321447434461 0.0 -1.48390077762024 -0.0155803976143043 0.0

Carol: And so it does, almost. Since some of the additions and multiplications
and such are done in a different order, round-off errors may prevent us from
getting the exact same results, but this is certainly close enough. And yes, I
admit, this code is quite a bit simpler.

Erica: Not only that, you can now understand the mathematical structure
better. The increments in position and velocity, in the last two lines, are just
Taylor series expansions, up to terms that contain the accelerations. In the case
of the position, the acceleration term is second order in dt and so the original
value of the acceleration is good enough. In the case of the velocity, we need
more precision, so we take the average of the forward and backward Euler values.

Carol: On the other hand, the inner loop in our code in euler modified vector.rb
was even shorter. Here it is:

1000.times{
rl, vl = step_pos_vel(r,v,dt)
r2, v2 = step_pos_vel(rl,vl,dt)
r=05=x* (r+r12)
v=0.5%(v+v2)
print_pos_vel(r,v)

Dan Yes, but at the expense of introducing an extra method, making the whole
code longer again.

202 CHAPTER 17. MODIFIED EULER IN VECTOR FORM

Erica: I guess there is a trade off here. Introducing an extra method gives the
elegance of seeing two steps being taken explicitly, which shortening the code as
I just did brings out the Taylor series character of the result of averaging two
steps.

Carol: I agree. Well, we’ve learned a lot, and I am actually happy to have
several versions. In general, there is never just one right solution for any question
concerning software writing!

Chapter 18

Leapfrog

18.1 Interleaving Positions and Velocities

Carol: Erica, we now have a second-order algorithm, modified Euler, but you
mentioned an other one, quite a while ago, that you seemed to prefer.

Erica: Yes, the leapfrog algorithm, a nice and simple scheme. I just learned
about that in class, so it is still fresh in my memory.

Dan: What a strange name. Does it let particles jump around like frogs?
Carol: Or like children jumping over each other?

Erica: Something like that, I guess. I never thought about the meaning of the
name, apart from the fact that something is leaping over something, as we will
see in a moment. The algorithm is used quite widely, although it has different
names in different fields of science. In stellar dynamics you often hear it called
leapfrog, but in molecular dynamics it is generally called the Verlet method,
and I’'m sure there must be other names in use in other fields.

Here is the idea. Positions are defined at times ¢;,t;11,t;42,..., spaced at con-
stant intervals At, while the velocities are defined at times halfway in between,
indicated by t;_1/2,ti11/2, tits/2, - -, Where tig1 —ti11/9 = tig1/0 —t; = At/2.

It is these positions and velocities that ‘leap over’ each other. The leapfrog
integration scheme reads:

ri = ri-1+Vi_1,dl

Vi+1/2 = Vi71/2 +aidt (181)

Note that the accelerations a are defined only on integer times, just like the
positions, while the velocities are defined only on half-integer times. This makes

203

204 CHAPTER 18. LEAPFROG

t t t t t

i1 i-1/2 i d+1/2 11

Figure 18.1: With the leapfrog algorithm, when we update a position value to
a new point in time, we use the information from the velocity value in between
the old and the new point in time. This is indicated by the vertical downward
arrows. Similarly, when we update a velocity value to a new point in time, we
use the information from the acceleration value in between the old and the new
point in time. Each acceleration value is computed directly from the position
value, using Newton’s law of gravity. This is indicated with the dashed upward
pointing arrows.

sense, given that the acceleration on one particle depends only on its position
with respect to all other particles, and not on its or their velocities. To put it in
mathematical terms, for many situations in physics the acceleration depends on
velocity and position, as a(r,v). The motion of an electron in a magnetic field
is one example, with the Lorentz force being velocity dependent. And in any
situation in which there is friction, the friction is typically stronger for higher
velocities. However, in the case of Newtonian gravity, the velocity dependence
is absent: a(r,v) = a(r).

Carol: 1 like the nice symmetric look of Eq. (18.1). But how do you get
started? If you know the positions and velocities at time ¢;, how are you going
to construct the velocities at time ¢;,1/57

Erica: The simplest way to extrapolate the velocities from t; to t;4;/9 is by
using a Taylor series. and the simplest nontrivial Taylor series is the one that
takes only one term beyond the initial value. It turns out that such utter
simplicity is already enough!

Concretely, we can start with the initial conditions ry and vq, and take the first
term in the Taylor series expansion to compute the first leap value for v:

Vij2 = Vo +agAt/2. (18.2)

We are then ready to the first line of apply Eq. (18.1) to compute the new
position ry, using the first leap value for v, /5. Next we compute the acceleration

18.2. TIME SYMMETRY 205

ap, using Newton’s law of gravitation, and this enables us to compute the second
leap value, v3/9, using the second line of apply Eq. (18.1). In this way we just
march on.

Carol: And when you want to stop, or pause in order to do a printout, you
can again construct a Taylor series in order to synchronize the positions and
velocities, I presume? If you make frequent outputs, you’ll have to do a lot
of Tayloring around. I wonder whether that doesn’t affect accuracy. Can you
estimate the errors that will be introduced that way?

Erica: Ah, the beauty here is: you do not introduce any extra errors! In fact,
what we usually do is never use the half-integer values for the velocity in any
explicit way. Here, let me rewrite the basic equations of the algorithm, in such
a way that position and velocity remain synchronized, both at the beginning
and at the end of each step.

riy1 = r;+vidt+ ai(dt)2/2
Vit = Vy + (ai + al-+1)dt/2 (183)

Dan: That looks totally different.

Erica: Ha, but looks deceive! Notice that the increment in r is given by the
time step multiplied by v; + a;dt/2, effectively equal to v; /5. Similarly, the
increment in v is given by the time step multiplied by (a; + a;+1)/2, effectively
equal to the intermediate value a;; /2. In conclusion, although both positions
and velocities are defined at integer times, their increments are governed by
quantities approximately defined at half-integer values of time.

18.2 Time Symmetry

Dan: I'm still not quite convinced that Eq. (18.1) and Eq. (18.4) really express
the same integration scheme.

Erica: An interesting way to see the equivalence of the two descriptions is to
note the fact that the first two equations are explicitly time-reversible, while it
is not at all obvious whether the last two equations are time-reversible. For the
two systems to be equivalent, they’d better share this property. Let us check
this, for both cases.

Carol: Eq. (18.1) indeed looks pretty time symmetric. Whether you jump
forward or backward, in both cases you use the same middle point to jump
over. So when you first jump forward and then jump backward, you come back
to the same point.

Erica: Yes, but I would like to prove that, too, in a mathematical way. It is all
too easy to fool yourself with purely language-based analogies.

206 CHAPTER 18. LEAPFROG

Dan: Spoke the true scientist!

Carol: Well, I agree. In computer science too, intuition can lead you astray
quite easily. How do you want to check this?

Erica: Let us first take one step forward, taking a time step —+dt, to evolve
{ri,vi_1/2} to {riy1,vit1/2}. We can then take one step backward, using the
same scheme, taking a time step of —dt, back in time. Clearly, after these two
steps the time will return to the same value since t; + dt — dt = t;.

We now have to inspect where the final positions and velocities {ry(t = i), v(t =
i —1/2)} are indeed equal to their initial values {r;,v;_i/o}. Here is the calcu-
lation. First we apply the first line of Eq. (18.1) to compute r; as the result
of the step back in time, and then we again apply the first line of Eq. (18.1),
to compute the forward step, and we see that indeed ry = r;. Next we apply
the second line of Eq. (18.1) two times, to find that vy = v;. Here is the whole
derivation:

Ty = Tip1— Vipi/2dt
= [I‘i + Vi+1/2dt] — Vi+1/2dt

r;

vy = Vi+1/2 — aldt
[Vifl/Q + aidt] — azdt

= Vi-1/2

Carol: Can’t argue with that! This is a crystal clear derivation. In an almost
trivial way, we can see clearly that time reversal causes both positions and
velocities to return to their old values, not only in an approximate way, but
exactly. This has amazing consequences! When we write a computer program
for the leapfrog algorithm, we can evolve forward a thousand time steps and
then evolve backward for the same length of time. Although we will make
integration errors at every step, and although the errors will get compounded,
all those errors will exactly cancel each other.

Don: Amazing indeed, but I would be really amazed if the same time symmetry
would hold for that other set of equations, Eq. (18.4), that don’t look time
symmetric at all!

Erica: Yes, that’s where the real fun comes in. The derivation is a bit longer,
but equally straightforward, and the steps are all the same. Here it is:

rs = Ti41 — Vi+1dt + ai+1(dt)2/2
= [r; + vidt + a;(dt)*/2] — [v; + (a; + a;41)dt/2] dt + a; 1 (dt)? /2

18.3. A VECTOR IMPLEMENTATION 207

= I‘,L-

vy = Vil — (ai+1 + al)dt/2
= [Vi + (ai + ai+1)dt/2} — (ai+1 + ai)dt/2
= V’i

In this case, too, we have exact time reversibility. Even though not at all obvious
at first, as soon as we write out the effects of stepping forward and backward,
the cancellations become manifest.

18.3 A Vector Implementation

Dan: Okay, I'm convinced now that Eq. (18.4) does the right thing. Let’s code
it up, and for convenience, let me write down the equations again:

riy1 = r;+ v;dt + ai(dt)2/2
Vi1 = Vi + (ai + ai+1)dt/2 (184)

Obviously, this is the better set of expressions to use. It is more convenient
than Eq. (18.1) since in the above equations we can forget about any leaping
and frogging, and just move from time ¢; to time ¢;,1, with both positions and
velocities.

Let me see whether I'm getting the hang of using vectors now. I will put it in
file leapfrog tryl.rb:

require "vector.rb"
include Math

def print_pos_vel(r,v)

r.each{|x| print(x, " ")}
v.each{|x| print(x, " ")}
print "\n"

end

(1, 0, O].to_v
v = [0, 0.5, 0].to_v
dt = 0.01
print_pos_vel(r,v)

r

1000.times{
r2 = r*r

208 CHAPTER 18. LEAPFROG

0.4 T
“leapfrog_try1.out" +

03

02

oy

0.1 F

o
T
A A
et W,

0.4 F

s

-02

-0.3

-0.4

Figure 18.2: First attempt at leapfrog integration, with step size dt = 0.01.

r3 = r2 * sqrt(r2)
a = -r/r3

v += 0.b5%axdt

r += v*dt

r2 = r*r
r3 = r2 * sqrt(r2)
a = -r/r3

v += 0.5%axdt
print_pos_vel(r,v)

and let me make a picture right away, in figure 18.2:

|gravity> ruby leapfrog_tryl.rb > leapfrog_tryl.out

Carol: Now that is a clear improvement over modified Euler. Presumably both
schemes are second-order, but the orbit integration is clearly more accurate in
the case of the leapfrog. Modified Euler gave figure 7?7 for the same time step
size. In fact, our leapfrog is almost as good as Modified Euler for a ten times
smaller time step, as given in figure 10.5, in the sense that the orbit does not
drift away.

Erica: That is in fact an essential part of the leapfrog algorithm. If it would
drift in one direction, and if you would then play time backward, it would have

18.4. SAVING SOME WORK 209

to drift in the other direction — which means it would not be time symmetric.
So because the leapfrog is time symmetric, it is impossible for the orbits to drift!

18.4 Saving Some Work

Dan: Ah, I just noticed something. In my leapfrog implementation, I compute
the acceleration at the end of the loop, and then at the beginning of the next
loop, I calculate the exact same acceleration once again. Since the position r
does not change between the two calculations, the value of the acceleration a is
bound to be the same. That’s a waste of computing time!

Carol: Well, for the two-body problem, we don’t have to worry too much about
exactly how many milliseconds of computer time we are spending.

Erica: True, but when we go to a thousand-body problem, this will become an
issue. Good point, Dan, why don’t you leave one of the acceleration calculations
out from the loop.

Dan: The question is, which one. If I leave out the first one, the acceleration
is not yet defined, when the loop gets transversed for the very first time. But
if T leave out the second one, I cannot calculate the value of the velocity at the
end of the loop.

Hmmm. The second acceleration calculation is clearly essential. But . . . , aha,
I see! I can take out the first acceleration calculation and place it before the
loop. That way, the length of the computer program does not change. However,
inside the loop unnecessary calculations are no longer being done.

Here is the new version, in file leapfrog_try2.rb:

require "vector.rb"
include Math

def print_pos_vel(r,v)

r.each{|x| print(x, " ")}
v.each{|x| print(x, " ")}
print "\n"

end

r =[1, 0, 0].to_v
v = [0, 0.5, 0].to_v
dt = 0.01
print_pos_vel(r,v)

r2 = r*r
r3 = r2 * sqrt(r2)
a=-r/r3

210 CHAPTER 18. LEAPFROG

1000.timesq{
v += 0.5*axdt
r += v*dt

r2 = r*r
r3 = r2 x sqrt(r2)
a = -r/r3

v += 0.5%axdt
print_pos_vel(r,v)

Let me check first to see that we get the same result. The first code gives:

|gravity> ruby leapfrog_tryl.rb | tail -1
0.583527377458303 -0.387366076048216 0.0 1.03799194001953 0.167802127213742

and the second version gives:

|gravity> ruby leapfrog_try2.rb | tail -1
0.583527377458303 -0.387366076048216 0.0 1.03799194001953 0.167802127213742

Good.

Carol: Let’s check whether you really made the computation faster. We can
redirect the standard output to /dev/null, literally a null device, effectively a
waste basket, which is a Unix way of throwing the results away. That way, we
are left only with output that appears on the standard error channel, such as
timing information provided by the time command.

The first code gives:

|gravity> time ruby leapfrog_tryl.rb > /dev/null
0.232u 0.000s 0:00.24 95.870+0k 0+0io Opf+0w

and the second version gives:

|gravity> time ruby leapfrog_try2.rb > /dev/null
0.196u 0.001s 0:00.21 90.47%0+0k 0+0io Opf+O0w

Dan: Indeed, a bit faster. If all the computer time would have been spend
on acceleration calculation, things would have sped up by a factor two, but of
course, that is not the case, so the speed increase should be quite a bit less.
This looks quite reasonable.

0

0

18.5. THE DRY PRINCIPLE ONCE AGAIN

211

18.5 The DRY Principle Once Again

Carol: But we can make it even more clear, and we can make the loop even
shorter, with the help of our old friend, the DRY principle. Look, the calculation
for the acceleration, before and in the loop, contains the exact same three lines.
Those lines really ask to be encapsulated in a method. Let me do that, in file

leapfrog.rb:

require "vector.rb"
include Math

def print_pos_vel(r,v)
r.each{|x| print(x,
v.each{|x| print(x, "
print "\n"

end

def acc(r)
r2 = r*r
r3 = r2 x sqrt(r2)
-r/r3

end

[1, 0, O].to_v

v = [0, 0.5, 0].to_v
dt = 0.01
print_pos_vel(r,v)

r

a = acc(r)

1000.timesq{
v += 0.b*axdt
r += v*dt
a = acc(r)
v += 0.b*xaxdt
print_pos_vel(r,v)

II)}
II)}

and as always, I'll test it:

|gravity> ruby leapfrog.rb | tail -1
0.583527377458303 -0.387366076048216 0.0

1.03799194001953 0.167802127213742 0.0

212 CHAPTER 18. LEAPFROG

Chapter 19

Time Reversibility

19.1 Long Time Behavior

Dan: I must agree, that is all very nice and clean. But let’s get back to the
behavior of the two second-order algorithms that we have coded up so far. Time
symmetry is supposed to prevent a long-term drift. I'd like to test that a bit
more.

Let me take the modified Euler code, copying it from euler modified_vector.rb
to euler modified_long_time.rb. I will let the code run ten times longer, by
changing the loop defining line to:

10000.timesq{

Carol: I'm glad you're getting the hang of using long names. Thank you!

Dan: My pleasure. But see, I did still abbreviate a bit: I could have left the
word wector in, but that really would have made the name too long, for my
taste.

On a more important topic, I really don’t like having different files lying around
that are almost the same, except for just one extra 0 in one line.

Carol: We’ll have to do something about that. I had already been thinking
about introducing command line arguments.

Erica: What does that mean?

Carol: We really would like to specify the number of steps on the command
line, as an argument. It would be much better if we could take the program
euler modified vector.rb and run it for 10,000 steps, simply by invoking it
as

213

214 CHAPTER 19. TIME REVERSIBILITY
|gravity> ruby euler_modified_vector.rb -n 10000

to indicate that now we want to take that many steps, or probably even better
|gravity> ruby euler_modified_vector.rb -t 100

to indicate that we want to run for 100 time units.

Dan: I would like that much better! Let’s put that on our to-do list. But for
now, let me finish my long time behavior test. I'll write leapfrog_long -time.rb,
by modifying leapfrog.rb in the same way, to take 10,000 steps:

10000. times{

Our expectation would be that modified Euler will completely screw up, while
the leapfrog will keep behaving relatively well. Let’s see what will happen!

First I will make a picture of the long run for modified Euler, in figure 19.1:

|gravity> ruby euler_modified_long_time.rb > euler_modified_long_time.out

Next, I will make a picture of the long run for our leapfrog, in figure 19.2:

|gravity> ruby leapfrog_long_time.rb > leapfrog_long_time.out

19.2 Discussing Time Symmetry

Carol: Your expectation was right, to some extent. Modified Euler is almost
literally screwing up: the orbit gets wider and wider. In contrast, the leapfrog
orbit keeps the same size, which is better for sure, but why does the orbit rotate?

Erica: Well, why not? A time symmetric code cannot spiral out, since such
a motion would increase the size of the orbit. If an algorithm lets an orbit
grow in one direction in time, it lets the orbit grow when applied to the other
direction in time as well, as so it would not be time symmetric. However, if
an orbit rotates clockwise in one direction in time, you might expect the orbit
to rotate counter-clockwise in the other direction in time. So time reversal will
just map a leftward rotation of the whole orbit figure into a rightward rotation,
and similarly rightward into leftward

Dan: I don’t get that. What’s so different about expanding and rotating?

19.2. DISCUSSING TIME SYMMETRY 215

0.5 T T T LT
"euler_modified_long_time.out"
0 -
_05 -
1 F
15 |
2 1 1 1 1 1
-0.5 0 0.5 1 1.5 2

Figure 19.1: Long time integration till £ = 100, with the modified Euler algo-
rithm, and step size dt = 0.01.

216 CHAPTER 19. TIME REVERSIBILITY

T
long_time.out" +

Figure 19.2: Long time integration till ¢ = 100, with the leapfrog algorithm,
and step size dt = 0.01.

Erica: The key point is that we already have a sense of direction, in our elliptic
Kepler orbit. Our star moves counter-clockwise along the ellipse, and we see
that the leapfrog lets the whole ellipse slowly rotate clockwise. This means
that if we let our star move in the other direction, clockwise, then the leapfrog
would let the whole ellipse turn slowly in counter-clockwise direction. So the
leapfrog algorithm would remain time symmetric: revolve within the orbit in
one direction, and the whole orbit rotates; then revolve back into the other
direction and the orbit shifts back again, until it reaches the original position.

However, during the course of one revolution, the orbit neither shrinks nor
expands. Since there is no prefered direction, inwards or outwards, there is
nothing for the leapfrog algorithm to capitalize on. It it were to make an error
in one direction in time, say expanding the orbit, it would have to make the same
error when going backward in time. So after moving forward and backward in
time, during both moves the orbit would have expanded, and there is no way to
get back to the original starting point. In other words, that would violate time
Symimetry.

19.3. TESTING TIME SYMMETRY 217

19.3 Testing Time Symmetry

Dan: Hmmmm. I guess. Well, let’s first see how well this time symmetry idea
pans out in practice. Clearly, nothing stops us from running the code back-
ward. After taking 10,000 steps forward, we can reverse the direction by simply
changing the sign of the time step value. I will do that, and I will omit the print
statement in the forward loop, so that we only get to see the backward trajec-
tory. If I would print everything on top of each other, we probably wouldn’t see
what was going on.

I will call the new code leapfrog_backward.rb, which is the same as the old
code leapfrog_long_time.rb, except that I have replaced the original loop by
the following two loops:

10000.times{
v += 0.b*a*dt

r += v*dt

a = acc(r)

v += 0.5%axdt
¥
dt = -dt

10000. timesq{
v += 0.b*xaxdt
r += vxdt
a = acc(r)
v += 0.b*axdt
print_pos_vel(r,v)

I will plot the backward trajectory in figure 19.3:

|gravity> ruby leapfrog_backward.rb > leapfrog_backward.out

Carol: Figure 19.3 looks exactly the same as figure 19.2!

Erica: Ah, yes, but that’s precisely the point. The stars are retracing their
steps so accurately, we can’t see the difference!

Dan: Let’s check how close the stars reach their point of departure, after their
long travel:

|gravity> ruby leapfrog_backward.rb | tail -1
0.999999999999975 -1.06571782648723e-12 0.0 2.12594872261995e-12 0.500000000000013 0.0

218 CHAPTER 19. TIME REVERSIBILITY

backward.out' +

Figure 19.3: Time reversed version of the long time integration with the leapfrog
algorithm, from ¢ = 100 back to t = 0, and step size dt = —0.01.

Wow, that’s very close to the initial position and velocity, which we specified in
our code to be:

= [1, 0, 0].to_v
[0, 0.5, O0].to_v

< R
non

19.4 Two Ways to Go Backward

Carol: But shouldn’t the velocity have the opposite sign, now that we’re going
backward?

Dan: No, I've gone back in time, using negative time steps, while leaving
everything else the same, including the sign of the velocity. I could instead have
reversed the direction of the velocity, while leaving the time step the same. That
would mean that time would keep flowing forward, but the stars would move in
the opposite direction, from time ¢t = 100 to ¢ = 200. Let me try that too, why
not, in leapfrog_onward.rb. This code is the same as leapfrog backward.rb,

19.5. TESTING A LACK OF TIME SYMMETRY 219

with the only difference being the one line in between the two loops, which now
reads:

In this case, the final position and velocity are:

|gravity> ruby leapfrog_onward.rb | tail -1

0.999999999999975 -1.06571782648723e-12 0.0 -2.12594872261995e-12

Carol: Indeed, now the velocity is reversed, while reaching the same point.
Great, thanks!

Erica: It is remarkable how close we come to the starting point. And yet, it is
not exactly the starting point.

Carol: The small deviations must be related to roundoff. While the algorithm
itself is strictly time symmetric, in the real world of computing we typically
work with double precision numbers of 64 bits. This means that floating point
numbers have a finite precision, and that any calculation in floating point num-
bers will be rounded off to the floating point number that is closest to the true
result. Since the rounding off process is not time symmetric, it will introduce a
slight time asymmetry.

19.5 Testing a Lack of Time Symmetry

Dan: Before we move on, I'd like to make sure that the rival of the leapfrog,
good old modified Euler, is really not time symmetric.

I will do the same as what we did for the leapfrog. I will call the new code

-0.500000000000013

euler_modified_backward.rb, which is the same as the old code euler modified_long time.rb,

except that I have again replaced the original loop by these two loops:

10000.times{
rl, vl = step_pos_vel(r,v,dt)
r2, v2 = step_pos_vel(rl,vl,dt)
r=05% (r+r2)

v=0.5%(v+v2)

}

dt = -dt
10000.times{
rl, vl = step_pos_vel(r,v,dt)

-0

220 CHAPTER 19. TIME REVERSIBILITY

0.5 T T T T T

‘I'euIer_moaified_bacll(ward.out"I +

25

-0.5 0 0.5 1 1.5 2 25 3 35 4

Figure 19.4: Time reversed version of the long time integration with the modified
Euler algorithm, from ¢ = 100 back to ¢t = 0, and step size dt = —0.01.

r2, v2 = step_pos_vel(rl,vl,dt)
r=0.5% (r+r2)
v=0.5%(v+v2)
print_pos_vel(r,v)

I will plot the backward trajectory in figure 19.4:

|gravity> ruby euler_modified_backward.rb > euler_modified_backward.out

Carol: Figure 19.4 looks nothing like figure 19.1. Even when you reverse the
direction of time, the orbit just continues to spiral out, like it did before. You
have now definitely established that the modified Euler algorithm is not time
symmetric!

Chapter 20

Energy Conservation

20.1 Kinetic and Potential Energy

Dan: I am glad that we now got a few second-order integration schemes. They
surely are a lot more efficient than the first-order forward Euler scheme we
started with!

Erica: Definitely. For the same amount of computer time, the accuracy of
second-order schemes is much higher. You know, it would be nice to quantify
that notion, to show exactly how accurate each scheme really is.

Carol: We have done something like that already, by checking how the endpoint
of an orbit converged to a specific value, for smaller and smaller time steps.

Erica: Yes, but in that case we always needed two different choices of the
time step, for two different integrations, so that we could compare the distance
between the two end points. I would prefer to use a measure that tells us how
good a single orbit calculation is. And this is indeed what astronomers do when
they compute orbits: they pick a physical quantity that should be conversed,
and they use that to get an impression of the size of the numerical errors.

Dan: What sort of quantities do you have in mind?

Erica: The typical conserved quantities for a system of interacting particles
are energy and angular momentum. Of these, energy is a scalar and angular
momentum is a vector. Therefore, for simplicity, people generally like to measure
the change in energy, in order to get an idea of the errors introduced during orbit
integration.

Dan: Okay, let’s write a method to check energy conservation. For a system of
two particles, how do you write down the total energy?

Erica: There are two contributions. There is the energy of motion, also called
kinetic energy. This energy depends only on the speed of each particle. For a

221

222 CHAPTER 20. ENERGY CONSERVATION

particle with mass M; and velocity v; = |v;|, the kinetic energy is

Eying = %Mivf (20.1)

And then there is the energy that is given by the gravitational interaction be-
tween the particles. This is called the gravitational potential energy. For each
pair of particles, say ¢ and j, the gravitational potential energy is given by

GM,;M;

Tij

(20.2)

Epot,ij = —

where 7;; = |r; — r;| is the distance between the two particles.
Dan: Why is there a minus sign?

Erica: The gravitational potential energy is normally chosen to be zero when
the two particles are very far away from each other, which makes sense, since in
that case there is almost no gravitational interaction. Indeed, in our expression
above, for 7 — 0o you can see that Epu; — 0.

It is clear from the definition of Ey;, ; that the kinetic energy for each particle
is always positive or zero. This implies, because the total energy is conserved,
that the potential energy has to be zero or negative.

For example, if you place two particles at rest at a very large distance, the
kinetic energy is zero and the potential energy is almost zero as well. Then,
when the particles start falling toward each other, the kinetic energy gets larger
and larger, and therefore more and more positive. The only way that the total
energy can be conserved is for the potential energy to become more and more
negative.

20.2 Relative Coordinates

Carol: In our computer programs we have used the one-body representation,
using the relative separation r and relative velocity v, rather than the individ-
ual positions r; and velocities v; of the particles. So we have to rewrite your
expressions.

Erica: Yes, we have to transform the kinetic and potential energies from the
two-body representation to the one-body representation. Let us start with the
kinetic energy. Using Eq. (20.1, we get:

Ekin = Eging + Egin2 = $Mivi + 2 Movd (20.3)

We can use Eq. (4.18). When we differentiate that equation with respect to
time, we get:

20.3. SPECIFIC ENERGIES 223

M,
vVi=——"—vV
YTUM 4 M
(20.4)
F—l
Vo =4+—"T"—v
27 My + M
When we substitute these values in Eq. (20.3), we get
Ekin = %Ml’l)f + %MQU%
1 M M3 2 1 MyM? s _ 1 MMy o, 90.5
= 2 2V T3 2 T 2yn Lt (20.5)
(Ml + Mg) (M1 + Mg) 1+ Mo
As for the potential energy, using Eq. (20.2), we get:
G My M.
Epot = —# (20.6)

and this expression already uses relative coordinates only.

In our case, we have decided to use units in which G = M; + M, = 1, so the
last two expressions simplify to:

Eyin = 3 My Mav® (20.7)
M, M.
Epot = — lr 2 (20.8)

The total energy, which is conserved, is then

1
Etot = M1M2 (é’U2 - 7") (209)

20.3 Specific Energies

Carol: That’s a bit annoying, to see that factor M; My coming in. So far, we
did not have to specify the masses of the stars. Our equation of motion for
Newtonian gravity, Eq. (4.22) contained only the sum of the masses. So when
we choose that sum to be unity, the equation became simply Eq. (4.24), and
we had gotten rid of any mention of masses.

In other words, whether we had equal masses, M; = My = 1/2, whether we
took one mass to be three times as large as the other, M7 = 3/4; My = 1/4, in
both cases the orbits would be exactly the same. However, you are now telling

224 CHAPTER 20. ENERGY CONSERVATION

us that the total energy will be different for those two cases. In the first case,
the factor M; My = 1/4 whereas in the second case, it becomes M; My = 3/16,
a smaller value.

It seems that when we want to measure energy conservation, we have to make
an extra choice, for example by specifying the ratio of the two masses.

Dan: But the only thing we care about is whether the energy is conserved. All
we want to know whether the term between parentheses in Eq. (20.9) remains
constant, or almost constant. Who cares about the funny factor in front?

Erica: Well, yes, I basically agree, but let us try to be a bit more precise, in
describing what we do. To make things clear, let me go back to our earlier
description, which still contains the total mass and the gravitational constant.
If you look at the text books, you will find that they introduce the so-called
reduced mass p, defined as:

My M,
_ iz 20.10
=0+ (20.10)

As you can see, it has indeed the physical dimension of mass: two powers of

mass divided by one power leaves mass to the power one. The total mass can
be written as simply

M = M + M, (20.11)

In terms of these two quantities, we can define our two energies as:

Epin = $0° (20.12)
and
GuM
Epot = _MT (20.13)

So this looks like the motion of a pseudo particle with mass p, moving in the
gravitational field of another particle with mass M. The total energy is given
by

GuM GM
Eior = Sp® — MT —u (;UZ’ - T) (20.14)

We can now define the specific energy £ as the energy per unit mass for the
pseudo particle:

Epin = — = 1y (20.15)

20.4. DIAGNOSTICS 225

and

E,, M
Epot = Zt = _G — (2016)

and with our convention G = M; + Ms = 1, we find for the specific total energy:

1
Erot = 2% — " (20.17)

This is exactly the expression in parentheses in the right-hand side of Eq. (77),
which Dan wanted to use. And now we have a name for it: the specific energy,
defined as the energy per unit reduced mass.

Dan: Well, name or no name, let’s see whether it is actually conserved reason-
ably well in our calculations.

20.4 Diagnostics

Carol: Let us start with our simplest vector code, euler_vector.rb, and let us
add some nice diagnostics. We definitely want to check to what extent the total
energy is constant, but I would also like to see how the kinetic and potential
energy are varying.

To begin with, let me define a method energies which returns all three energies,
kinetic, potential and total, in one array:

def energies(r,v)
ekin = 0.5%vxv
epot = -1/sqrt(r*r)
[ekin, epot, ekint+epot]
end

Erica: Specific energies, that is.

Carol: Yes, but I don’t feel that it is necessary to add that to the method
name.

Dan: I knew you would get tired of long names!

Carol: Only if there is no danger for confusion. In this case, we're not going
to mix specific and absolute energies — and if we ever do, we can always make
the name longer again.

Next I would like to write a method that prints diagnostics, let me just call it
print_diagnostics, that will print out all three energies.

226 CHAPTER 20. ENERGY CONSERVATION

Erica: But what we really need is to know the deviation from the original
energy value, to test energy conservation.

Carol: You're right. So that means that we had better measure the energy right
from the start, and then remember that value. Let us call the initial energy 0.

Dan: That’s almost too short a name, for my taste!

Carol: I was just trying to see how far I could push your taste! Now we can use
the method above, picking out the last array element using the Array method
last, to find the initial total energy

e0 = energies(r,v).last

before we enter the integration loop.

Now let me think a bit carefully about the layout that print_diagnostics
should follow. We probably only need three significant digits for the relative
energy change. That will be good enough to see how good or bad our energy
conservation is. In Ruby you can use a C like notation to fix the output format,
using expressions like printf ("%.3g", x) to print the value of a floating point
variable x with three significant digits.

Actually, what I will do is use sprintf instead of printf, which prints the same
information onto a string, rather than directly onto the output channel. That
way, I can use the Ruby print command, which takes multiple arguments. If x
contains the number 7, say, then writing

print "x = ", sprintf("%.3g\n", x)
gets translated into

print "x = ", "3.14\n"

and since print just concatenates its argument, this would give the same result
as typing

print "x = 3.14\n"
so you should see
x = 3.14

on the screen, where I have added the new line character \n for good measure,
to let the next prompt appear on a new line.

Hmmm, this ought to do it. Here is the whole code:

20.5. CHECKING ENERGY 227

require "vector.rb"
include Math

def energies(r,v)
ekin = 0.5%v*v

epot = -1/sqrt(r*r)
[ekin, epot, ekint+epot]
end

def print_pos_vel(r,v)

r.each{|x| print(x, " ")}
v.each{|x| print(x, " ")}
print "\n"

end

def print_diagnostics(r,v,e0)
ekin, epot, etot = energies(r,v)

STDERR.print " E_kin = ", sprintf("’%.3g, ", ekin)

STDERR.print "E_pot = ", sprintf("%.3g; ", epot)

STDERR.print "E_tot = ", sprintf("%.3g\n", etot)

STDERR.print " E_tot - E_init = ", sprintf("%.3g, ", etot-e0)

STDERR.print "(E_tot - E_init) / E_init = ", sprintf("%.3g\n", (etot-e0)/e0)
end

r =[1, 0, 0].to_v

v = [0, 0.5, 0].to_v

dt = 0.01

e0 = energies(r,v).last

print_pos_vel(r,v)
print_diagnostics(r,v,e0)
1000.timesq{

r2 = r*r
r3 = r2 x sqrt(r2)
a=-r/r3
r += v*dt

v += axdt
print_pos_vel(r,v)
}

print_diagnostics(r,v,e0)

20.5 Checking Energy

Dan: What does STDERR mean, in front of the print statements?

228 CHAPTER 20. ENERGY CONSERVATION

Carol: That means that the information will be printed on the standard error
stream. By default, information will be printed on the standard out stream.
These are the two main output streams in Unix.

Dan: Why is it called error stream?

Carol: If you have a lot of output, you want to redirect that to a file. But
if something suddenly goes wrong, you would like to be warned about that on
the screen. You certainly don’t want a warning message or error message to be
mixed in with all the other stuff in the output file; you might never notice it
there.

In our case, I would like to use this error channel to report on the behavior of
the energies. In fact, we want to determine the energy errors, so it is somewhat
appropriate to use the error stream, even though the name suggests that it is
normally used to report real errors. But why not? We will use it here to report
on small numerical errors.

Dan: So you report the values of the various energy contributions only at the
beginning and at the end of the run.

Carol: For now, that is good enough. At least it’s a start. But let me check to
see whether all this works. We don’t need the positions and velocities for now,
so I will redirect those to our waste basket /dev/null

|gravity> ruby euler_energy_tryl.rb > /dev/null
E_kin = 0.125, E_pot = -1; E_tot = -0.875
E_tot - E_init = 0, (E_tot - E_init) / E_init = -0
E_kin = 0.495, E_pot = -0.101; E_tot = 0.394
E_tot - E_init = 1.27, (E_tot - E_init) / E_init = -1

Dan: That does look pretty, I must say. But look, the energy is totally different,
at the beginning and at the end of the run.

Erica: As it should be: remember, this was our very first run, when we used a
time step that was too big to integrate an elliptic orbit! We made a huge error
at pericenter. In fact, we can now see that the energy changed sign. We started
with a bound orbit, with a total energy that was negative. But at the end of
the integration the energy has become positive! That means that the particles
can escape to infinity.

Carol: Why is that?

Erica: When the particles are very far away from each other, the potential
energy becomes negligible, and the energy is dominated by the kinetic energy.
Since kinetic energy cannot be negative, such a wide separation is impossible if
the total energy is negative. But for zero or positive total energy, there is nothing
that can prevent the two particles to fly away from each other completely. And
clearly, that is what happened here, as a result of numerical errors.

.45

20.6. ERROR GROWTH 229

Dan: Before drawing too many conclusions, we’d better check whether we still
are talking about the same orbit as we did before.

Carol: My pleasure. Here is what the old code gave:

|gravity> ruby euler_vector.rb > euler_vector.out

|gravity> head -1 euler_vector.out

1 0 0 0 0.5 O

|gravity> tail -1 euler_vector.out

7.6937453936572 -6.27772005661599 0.0 0.812206830641815 -0.574200201239989 0.0

And here is what the diagnostics produces, also at the very beginning and end
of the output file:

|gravity> ruby euler_energy_tryl.rb > euler_energy_tryl.out
E_kin = 0.125, E_pot = -1; E_tot = -0.875
E_tot - E_init = 0, (E_tot - E_init) / E_init = -0
E_kin = 0.495, E_pot = -0.101; E_tot = 0.394
E_tot - E_init = 1.27, (E_tot - E_init) / E_init = -1.45
|gravity> head -1 euler_energy_tryl.out
10 0 0 0.5 0
|gravity> tail -1 euler_energy_tryl.out
7.6937453936572 -6.27772005661599 0.0 0.812206830641815 -0.574200201239989 0.0

Dan: Good! Exactly the same.

20.6 Error Growth

Erica: We know that our first orbit integration produced large errors, and we
have quantified that by looking at the final energy error, at the end of our orbit
integration. But it would be a lot more instructive to see how the energy error
is growing in time.

Carol: Easily done: in file euler_energy try2.rb, I will modify our print_pos_vel
method to include the total energy value as well, calling it print_pos_vel_energy
instead:

def print_pos_vel_energy(r,v,e0)
r.each{|x| print(x, " ")}
v.each{|x| print(x, " ")}
etot = energies(r,v).last
print (etot-e0)/e0
print "\n"

end

230 CHAPTER 20. ENERGY CONSERVATION

As you can see, I am printing the energy last, after the positions and velocities.
And of course, in the code I'm replacing the old name by the new name in the
two invocations, just before entering the loop and at the end of the loop. Let’s
run it:

|gravity> ruby euler_energy_try2.rb > euler_energy_try2.out
E_kin = 0.125, E_pot = -1; E_tot = -0.875
E_tot - E_init = 0, (E_tot - E_init) / E_init = -0
E_kin = 0.495, E_pot = -0.101; E_tot = 0.394
E_tot - E_init = 1.27, (E_tot - E_init) / E_init = -1.45
|gravity> head -1 euler_energy_try2.out
10 0 0 0.5 0 -0.0
|gravity> tail -1 euler_energy_try2.out
7.6937453936572 -6.27772005661599 0.0 0.812206830641815 -0.574200201239989

Erica: I don’t like the way these numbers are rolling on and on. We don’t
really need that much precision in the positions and velocities, if we just want
to make a pretty picture. Four or five digits should be more than enough.

Carol: That’s easy to fix. In file euler_energy_try3.rb I will change the
frequent output method as follows:

def print_pos_vel_energy(r,v,e0)
r.each{|x| printf("%.5g ", x)}
v.each{|x| printf("%.5g ", x)}
etot = energies(r,v).last
print (etot-e0)/e0
print "\n"

end

This should look better now:

|gravity> ruby euler_energy_try3.rb > euler_energy_try3.out
E_kin = 0.125, E_pot = -1; E_tot = -0.875
E_tot - E_init = 0, (E_tot - E_init) / E_init = -0
E_kin = 0.495, E_pot = -0.101; E_tot = 0.394
E_tot - E_init = 1.27, (E_tot - E_init) / E_init = -1.45
|gravity> head -1 euler_energy_try3.out
10 0 0 0.5 0 -0.0
|gravity> tail -1 euler_energy_try3.out
7.6937 -6.2777 O 0.81221 -0.5742 0 -1.45027113997184

0.

20.7. PERICENTER TROUBLES 231

"euIer_'energy_t:'y3.out" u'sing 12 4

Figure 20.1: Trajectory of our very first forward Euler integration attempt.

20.7 Pericenter Troubles

Carol: Let’s figure out what magic incantations gnuplot wants us to give it, to
plot the energy as a function of time. To start with, let me remember how we
have plotted the orbit. Ah yes, we have been using the fact that gnuplot use the
first two columns, if you don’t specify anything otherwise. Instead of relaying on
that default choice, let’s plot the orbit again, this time giving gnuplot explicit
instructions to use the data from columns 1 and 2:

|gravity> gnuplot

gnuplot> set size ratio -1

gnuplot> plot "euler_energy_try3.out" using 1:2
gnuplot> quit

So this gives figure 20.1, and indeed, it looks just like before, when we produced
figure 7.1.

Now to make Carol happy, we will plot the values of the total energy, which
reside in column 7.

232 CHAPTER 20. ENERGY CONSERVATION

Dan: But wait, that is different. First we were plotting y as a function of x.
Now you are going to plot the energy E as a function of what? Of time, I guess.

Carol: Yes, that would be the most obvious choice. And because we are using
constant time steps, that boils down to plotting E as a function of output num-
ber, if we number the output lines successively. And indeed, gnuplot does have
a way to use the output line number as the thing to plot along the horizontal
axis: if you specify the value 0 as a column number, the output line number
will be used.

Dan: Ah, that makes sense, and that is easy to remember. If you have an
output line that reads, say, in the first three columns:

20 3
56
21

O P

then it is as if gnuplot itself adds the line numbers to the left:

and now the column numbering starts at 0 instead of at 1.

Carol: Yes, come to think of it, that must be the reason they introduced that
notation. Well, let me try:

|gravity> gnuplot

gnuplot> set size ratio -1

gnuplot> plot "euler_energy_try3.out" using 0:7
gnuplot> quit

Erica: Beautiful! Just as we expected, the main error is generated when the
two stars pass close to each other, at pericenter. But I had not expected the
error to be so sensitive to the distance between the stars. The error is generated
almost instantaneously!

Carol: Why would that be?

Erica: When the two stars come closer, the orbit becomes more curved, and
in addition, the speed becomes larger. So for both reasons, there is more of a
change in the orbit during a constant interval in time. It would be great if we
could use a smaller time step during pericenter passage, and I'm sure we’ll get
to that point, later on. But for now, as long as we are using constant time steps,

20.7. PERICENTER TROUBLES 233

"eﬁlerﬁenergyﬁtrya.out"' using 0:7 +

02 f
04 F
06 F

-08

+ + + o+ ++++44J

Y»,L+++ + o+
L

I I I I
0 200 400 600 800 1000

Figure 20.2: Error growth for our very first forward Euler integration attempt.

a higher speed means that each step will cover a larger distance in space. So

we are in a situation that we are actually taking longer steps in space exactly
there where the orbit is curved most.

Dan: Not a good thing to do.

Erica: I agree, but it’s the simplest thing to do. We can later try to be more
clever.

234 CHAPTER 20. ENERGY CONSERVATION

Chapter 21

Scaling of Energy Errors

21.1 A Matter of Time

Carol: So now we have seen how we are making a really big error, when we use
forward Euler with a time step that is really too large for a first-order integration
scheme. But that’s not what we are really interested in. We want to study the
behavior of errors in the case where the time steps are small enough to give
reasonable orbit pictures.

Erica: Yes, and then we want to compare first-order and second-order integra-
tion schemes, to check whether the energy errors scale in different ways. First
we should continue to look at forward Euler, but with smaller time steps.

Dan: You know, I really get tired of writing a whole new file, each time we
change a parameter, like the size of a time step. Can’t we let the program ask
for the time step size, so that we can type it in while the program is running?

Carol: Good idea. That is a much cleaner approach. And while we'’re at it,
why not ask for the total duration of the integration too. And that reminds me,
I really wasn’t very happy with the way we have forced the code to give sparse
output, at every interval of \Delta t = 0.01.

Dan: Remind me, what did we do there?
Carol: Take file euler_elliptic_100000_steps_sparse_ok.rb
Dan: Ah, yes, of course, how can I forget such a name!

Carol: Well, as the name says, that code took 100,000 steps, during a total
time of 10 time units. With output intervals of length 0.01, this means that we
needed only 1,000 outputs. In other words, we needed only to print the results
once every 100 steps. We did this with the following rather clumsy trick, using
the remainder operator %:

235

236 CHAPTER 21. SCALING OF ENERGY ERRORS

if i%100 == 99

prlnt (X, n n , y’ n n , Z, n Il)
print (VX, " " , VY, " n , VZ, n\nn)
end

I suggest that instead we introduce the time explicitly. Notice that so far we
have used a variable dt to keep the value of the time step size, but we have
never kept track of the time itself. Let us introduce a variable t to indicate the
time that has passed since the start of the integration. We can then specify a
desired interval between outputs, dt_out for short. And to keep track of when
the next output is scheduled to happen, we can use a variable t_out. Whenever
the time t reaches t_out or goes past it, we need to do another output.

Of course, our diagnostics method should now print the value of the time as
well. What else do we need to change. The main loop now becomes a test to
see whether the time t has passed to or beyond the final time t_end, specified
by the user. And after each output statement, t_out has to be incremented to
the next scheduled output time, by adding dt_out to its value. Well, that must
be about it, yes?

21.2 A New Control Structure

Let me open a file euler_energy_try4.rb and type it all in:

require "vector.rb"
include Math

def energies(r,v)
ekin = 0.5%v*v
epot = -1/sqrt(r*r)
[ekin, epot, ekint+epot]
end

def print_pos_vel_energy(r,v,e0)
r.each{|x| printf("%.5g ", x)}
v.each{|x| printf("%.5g ", x)}
etot = energies(r,v).last
print (etot-e0)/e0
print "\n"

end

def print_diagnostics(t,r,v,e0)
ekin, epot, etot = energies(r,v)
STDERR.print " t = ", sprintf("%.3g, ", t)

21.2. A NEW CONTROL STRUCTURE 237

STDERR.print " E_kin = ", sprintf("J.3g, ", ekin)

STDERR.print "E_pot = ", sprintf("%.3g; ", epot)

STDERR.print "E_tot = ", sprintf("%.3g\n", etot)

STDERR.print " E_tot - E_init = ", sprintf("}.3g, ", etot-e0)

STDERR.print "(E_tot - E_init) / E_init = ", sprintf("%.3g\n", (etot-e0)/e0)
end

[1, 0, 0].to_v
[0, 0.5, 0].to_v
e0 = energies(r,v).last

r

v

t=0

t_out = 0

dt_out = 0.01

STDERR.print "time step = 7\n"
dt = gets.to_£f

STDERR.print "final time = ?\n"
t_end = gets.to_f

print_pos_vel_energy(r,v,e0)
t_out += dt_out

print_diagnostics(t,r,v,e0)

while t < t_end

r2 = T*r

r3 = r2 x sqrt(r2)
a=-r/r3

r += vxdt

v += axdt

t += dt

if t >= t_out
print_pos_vel_energy(r,v,e0)
t_out += dt_out
end
end
print_diagnostics(t,r,v,e0)

Dan: What is gets?

Carol: That is a Ruby input statement, short for ‘get string’. It reads the next
line from the command line. So if you type a single value, and then hit the enter
key, gets gobbles up the number you have typed, but packaged as a string. For
example, when the code asks you for a time step, and you type

0.01

238 CHAPTER 21. SCALING OF ENERGY ERRORS

then gets returns the string "0.01", made up of four characters. What we really
want is a number, and the method to_f is the built-in Ruby way to convert a
string into a floating point number; it is short for ‘(convert) to float’.

21.3 Overshooting

Erica: Let’s give it the same values as before, to see whether we get the same
output.

Carol: This is what we found before:

|gravity> ruby euler_energy_try3.rb > euler_energy_try3.out
E_kin = 0.125, E_pot = -1; E_tot = -0.875
E_tot - E_init = 0, (E_tot - E_init) / E_init = -0
E_kin = 0.495, E_pot = -0.101; E_tot = 0.394
E_tot - E_init = 1.27, (E_tot - E_init) / E_init = -1.45

And let us see what our new program gives:

|gravity> ruby euler_energy_try4.rb > euler_energy_try4.out
time step = 7

0.01
final time = 7
10
t =0, E_kin = 0.125, E_pot = -1; E_tot = -0.875

E_tot - E_init = 0, (E_tot - E_init) / E_init = -0
t = 10, E_kin = 0.495, E_pot = -0.101; E_tot = 0.394
E_tot - E_init = 1.27, (E_tot - E_init) / E_init = -1.45

Dan: At least the diagnostics output is the same. How about the output files?
Carol: I'll do a diff:

|gravity> diff euler_energy_try3.out euler_energy_try4.out
100121002
> 7.7019 -6.2835 0 0.81213 -0.57414 0 -1.45027103130336

He, that is strange. Our friend diff claims that the two files are identical except
for the fact that our latest code produces one more line of output! Let me check
it with a word count:

21.4. KNOWING WHEN TO STOP 239

|gravity> wc euler_energy_try[34].out
1001 7007 59973 euler_energy_try3.out
1002 7014 60033 euler_energy_try4.out
2003 14021 120006

And what do you know, yes, 1001 lines in euler_energy_try3.out as it should
be, moving from times 0 till 10 with steps of 0.01, but why does euler_energy_try4.out
have 1002 lines??

Erica: That last program must be taking one more step, beyond time 10. Can
you show the last few lines for both output files?

Carol: Sure:

|gravity> tail -3 euler_energy_try3.out

7.6775 -6.2662 0 0.81236 -0.57433 0 -1.45027135833743
7.6856 -6.272 0 0.81229 -0.57426 0 -1.45027124898271

7.6937 -6.2777 0 0.81221 -0.5742 0 -1.45027113997184

|gravity> tail -3 euler_energy_try4.out

7.6856 -6.272 0 0.81229 -0.57426 0 -1.45027124898271

7.6937 -6.2777 0 0.81221 -0.5742 0 -1.45027113997184

7.7019 -6.2835 0 0.81213 -0.57414 O -1.45027103130336

Just like diff told us, the last few lines are identical, except for the fact that
euler_energy_try4.out shows one extra step. You must be right: it looks like
the code didn’t know how to stop in time.

21.4 Knowing When To Stop

Erica: I wonder why it overshot.

Carol: Let me put some debug statements in there, for now, just to see what
the code thinks it is doing, toward the end. Right at the beginning of the loop,
after the while line, I'll ask for the two time values to be printed out, the
running time t and the end time t_end, in file euler_energy_try5.rb:

while t < t_end
print "t =", t, " and t_end = ", t_end, "\n"

Here we go:

240 CHAPTER 21. SCALING OF ENERGY ERRORS

|gravity> ruby euler_energy_try5.rb > euler_energy_try5.out
time step = 7

0.01
final time = 7
10
t =0, E_kin = 0.125, E_pot = -1; E_tot = -0.875

E_tot - E_init = 0, (E_tot - E_init) / E_init = -0
t = 10, E_kin 0.495, E_pot = -0.101; E_tot = 0.394
E_tot - E_init = 1.27, (E_tot - E_init) / E_init = -1.45

|gravity> tail euler_energy_try5.out

= 9.95999999999983 and t_end = 10.0

.6694 -6.2605 0 0.81244 -0.57439 0 -1.45027146803748
= 9.96999999999983 and t_end = 10.0

.6775 -6.2662 0 0.81236 -0.57433 0 -1.45027135833743
= 9.97999999999983 and t_end = 10.0

.6856 -6.272 0 0.81229 -0.57426 0 -1.45027124898271

= 9.98999999999983 and t_end = 10.0

.6937 -6.2777 0 0.81221 -0.5742 0 -1.45027113997184

= 9.99999999999983 and t_end = 10.0

.7019 -6.2835 0 0.81213 -0.57414 0 -1.45027103130336

N Nt Nt Nt Nt

Erica: Aha! The problem is roundoff, that explains everything! The time vari-
able t is a floating point variable, and instead of reaching the exact time 10,
after 1,000 steps, it comes ever so close, but not quite at the right point. There-
fore, when it runs the loop test, it decides that the time has to be incremented
by another time step, and it then overshoots.

Carol: That suggests a simple solution. How about testing whether the time
has reached not exactly the end time, but close enough? Close enough could
mean half a time step. Let’s try! And I'll be bold and call the next file
euler_energy.rb, in the hope we now get it right. I will write the loop contin-
uation test like this:

while t < t_end - 0.5%*dt

That should do it:

|gravity> ruby euler_energy.rb > euler_energy.out
time step = 7

0.01

final time = 7

21.5. LINEAR SCALING 241

10
t

0, E_kin = 0.125, E_pot = -1; E_tot = -0.875
E_tot - E_init = 0, (E_tot - E_init) / E_init = -0
t = 10, E_kin = 0.495, E_pot = -0.101; E_tot = 0.394
E_tot - E_init = 1.27, (E_tot - E_init) / E_init = -1.45

|gravity> diff euler_energy_try3.out euler_energy.out

Dan: And it did it. No differences. Congratulations!

Carol: Let me be double sure:

|gravity> tail -1 euler_energy_try3.out

7.6937 -6.2777 0 0.81221 -0.5742 0 -1.45027113997184
|gravity> tail -1 euler_energy.out

7.6937 -6.2777 0 0.81221 -0.5742 0 -1.45027113997184

Good. So now we have a new tool, allowing us to change two parameters,
without having to change the source code each time. Progress!

21.5 Linear Scaling

Dan: Now the point of all this was to check whether the energy errors in forward
Euler scale linearly with the time step size. Let’s try a few values.

Carol: Sure thing. And now that we can control both the time step and the
duration of the integration, let’s speed things up a bit, and integrate for only
0.1 time unit. Starting with the previous time step we get:

|gravity> ruby euler_energy.rb > euler_energy.out
time step = 7

0.01
final time = 7
0.1
t =0, E_kin = 0.125, E_pot = -1; E_tot = -0.875
E_tot - E_init = 0, (E_tot - E_init) / E_init = -0
t =0.1, E_kin = 0.129, E_pot = -1; E_tot = -0.874

E_tot - E_init = 0.000626, (E_tot - E_init) / E_init = -0.000715

Making the time step ten times shorter, we find:

242 CHAPTER 21. SCALING OF ENERGY ERRORS

|gravity> ruby euler_energy.rb > euler_energy.out
time step = 7

0.001
final time = 7
0.1
t =0, E_kin = 0.125, E_pot = -1; E_tot = -0.875

E_tot - E_init = 0, (E_tot - E_init) / E_init = -0
0.1, E_kin = 0.129, E_pot = -1; E_tot = -0.875
E_tot - E_init = 6.26e-05, (E_tot - E_init) / E_init = -7.16e-05

ct
I

And making it yet ten times shorter gives:

|gravity> ruby euler_energy.rb > euler_energy.out
time step = 7

0.0001
final time = 7
0.1
t =0, E_kin = 0.125, E_pot = -1; E_tot = -0.875

E_tot - E_init = 0, (E_tot - E_init) / E_init = -0
t =0.1, E_kin = 0.129, E_pot = -1; E_tot = -0.875
E_tot - E_init = 6.26e-06, (E_tot - E_init) / E_init = -7.16e-06

Dan: Pretty linear, all right.

Carol: Let’s jump to a hundred times smaller time step, to see whether the
error still becomes a hundred times smaller:

|gravity> ruby euler_energy.rb > euler_energy.out
time step = 7

0.000001
final time = 7
0.1
t =0, E_kin = 0.125, E_pot = -1; E_tot = -0.875

E_tot - E_init = 0, (E_tot - E_init) / E_init = -0
t =0.1, E_kin = 0.129, E_pot = -1; E_tot = -0.875
E_tot - E_init = 6.26e-08, (E_tot - E_init) / E_init = -7.16e-08

Dan: And so it does.

21.6 Picture Time

Erica: I'd like to see how the energy error behaves in time, over a few full
orbits, and with better accuracy.

21.6. PICTURE TIME 243

0.5

"euler_en‘ergy.out" usiné 12+

04t

03 |

-0.1
-0.2
-03

04 F

05 I I I I I I
-0.2 0 0.2 0.4 0.6 0.8 1 12

Figure 21.1: Trajectory of a more accurate forward Euler integration, with
dt = 0.0001.

Carol: Okay, I'll take ten time units again for the total orbit integration, and
a time step of 0.0001. Just to remind us of what the orbit looked like, I'll plot
it again, in fig 21.1.

|gravity> ruby euler_energy.rb > euler_energy.out

time step = 7

0.0001

final time = 7

10
t

0, E_kin = 0.125, E_pot = -1; E_tot = -0.875
E_tot - E_init = 0, (E_tot - E_init) / E_init = -0
t = 10, E_kin = 1.27, E_pot = -2.07; E_tot = -0.8
E_tot - E_init = 0.0749, (E_tot - E_init) / E_init = -0.0856

Erica: Ah, yes, that time step was just about short enough to begin to see the
intended orbit, without too much drift.

Carol: And here is how the error grows, as a function of time, in fig 21.2.

Erica: Even though the orbit behaves a lot better now, it is clear that the energy
errors are still being generated mostly around pericenter passage. In between
those close encounters, the energy is very well conserved. But whenever the two
stars swing around each other, the energy drifts in a systematic and cumulative
way.

244 CHAPTER 21. SCALING OF ENERGY ERRORS

' "eulerjnergy.out"‘using 0:7‘ +

-0.01

-0.08
-0.04

-0.05

J+++++++M
e
L

-0.06

-0.07

+++++++J/
L

-0.08 -

|

-0.09

I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000

Figure 21.2: Energy error growth for a more accurate forward Euler integration,
with dt = 0.0001.

Dan: Yes, dramatically so! I can see why people like to use individual time
steps. If you use thrown in a few more time steps during close encounters,

you can get very much more accuracy as a return for investing very little extra
computer time.

Chapter 22

Error Scaling for 2nd-Order
Schemes

22.1 Modified Euler

Dan: Let’s have a look at our second-order integration schemes. If I under-
stand things correctly, they are supposed to improve energy quadratically, right?
When we make the time step ten times smaller, the energy error should become
one hundred times smaller.

Carol: That’s the expectation, yes. But first I have to write the codes. I
will start with the modified Euler algorithm, for which we had written the
vector version of the code in file euler modified vector.rb. I will open a
new file euler modified energy.rb, and add the same type of energy output
statements and diagnostics as we have done for the forward Euler case. Here
we go:

require "vector.rb"
include Math

def step_pos_vel(r,v,dt)

r2 = r*r

r3 = r2 x sqrt(r2)

a = -r/r3

[r + vxdt, v + axdt]
end

def energies(r,v)
ekin = 0.5xv*v
epot = -1/sqrt(r*r)

245

246 CHAPTER 22. ERROR SCALING FOR 2ND-ORDER SCHEMES

[ekin, epot, ekint+epot]
end

def print_pos_vel_energy(r,v,e0)
r.each{|x| printf("%.5g ", x)}
v.each{|x| printf("%.5g ", x)}
etot = energies(r,v).last
print (etot-e0)/e0
print "\n"

end

def print_diagnostics(t,r,v,e0)
ekin, epot, etot = energies(r,v)

STDERR.print " t = ", sprintf("%.3g, ", t)

STDERR.print " E_kin = ", sprintf("%.3g, ", ekin)

STDERR.print "E_pot = ", sprintf("%.3g; ", epot)

STDERR.print "E_tot = ", sprintf("%.3g\n", etot)

STDERR.print " E_tot - E_init = ", sprintf("%.3g, ", etot-e0)

STDERR.print "(E_tot - E_init) / E_init = ", sprintf("%.3g\n", (etot-e0)/e0)
end

[1, 0, O].to_v
v [0, 0.5, 0].to_v
e0 = energies(r,v).last

r

t =0

t_out = 0

dt_out = 0.01

STDERR.print "time step = 7\n"
dt = gets.to_f

STDERR.print "final time = 7\n"
t_end = gets.to_f

print_pos_vel_energy(r,v,e0)
t_out += dt_out
print_diagnostics(t,r,v,e0)

while t < t_end - 0.5%dt

rl, vl = step_pos_vel(r,v,dt)

r2, v2 = step_pos_vel(rl,vl,dt)

r=05=x% (r+r1r2)

v=0.5=x(v+v2)

t += dt

if t >= t_out
print_pos_vel_energy(r,v,e0)
t_out += dt_out

22.2. ENERGY ERROR SCALING 247

end
end
print_diagnostics(t,r,v,e0)

22.2 Energy Error Scaling

Dan: That all looks pretty straightforward.

Carol: And now it is just a matter of making the time steps smaller and smaller:

|gravity> ruby euler_modified_energy.rb > /dev/null
time step = 7

0.01
final time = 7
0.1
t =0, E_kin = 0.125, E_pot = -1; E_tot = -0.875
E_tot - E_init = 0, (E_tot - E_init) / E_init = -0
t =0.1, E_kin = 0.129, E_pot = -1; E_tot = -0.875

E_tot - E_init = -8.33e-08, (E_tot - E_init) / E_init = 9.52e-08

|gravity> ruby euler_modified_energy.rb > /dev/null
time step = 7
0.001
final time = 7
0.1
t =0, E_kin = 0.125, E_pot = -1; E_tot = -0.875
E_tot - E_init = 0, (E_tot - E_init) / E_init = -0
t=0.1, E_kin = 0.129, E_pot = -1; E_tot = -0.875
E_tot - E_init = -7.19e-10, (E_tot - E_init) / E_init = 8.22e-10

|gravity> ruby euler_modified_energy.rb > /dev/null

time step = 7

0.0001

final time = 7

0.1
t

0, E_kin = 0.125, E_pot = -1; E_tot = -0.875
E_tot - E_init = 0, (E_tot - E_init) / E_init = -0
t =0.1, E_kin = 0.129, E_pot = -1; E_tot = -0.875
E_tot - E_init = -7.07e-12, (E_tot - E_init) / E_init = 8.08e-12

248 CHAPTER 22. ERROR SCALING FOR 2ND-ORDER SCHEMES

|gravity> ruby euler_modified_energy.rb > /dev/null
time step = 7
0.00001
final time = 7
0.1
t =0, E_kin = 0.125, E_pot = -1; E_tot = -0.875
E_tot - E_init = 0, (E_tot - E_init) / E_init = -0
t =0.1, E_kin = 0.129, E_pot = -1; E_tot = -0.875
E_tot - E_init = -4.25e-14, (E_tot - E_init) / E_init = 4.86e-14

|gravity> ruby euler_modified_energy.rb > /dev/null

time step = 7

0.000001

final time = 7

0.1
t

0, E_kin = 0.125, E_pot = -1; E_tot = -0.875
E_tot - E_init = 0, (E_tot - E_init) / E_init = -0
t =0.1, E_kin = 0.129, E_pot = -1; E_tot = -0.875
E_tot - E_init = -1.41e-13, (E_tot - E_init) / E_init = 1.61e-13

Erica: Up till the last run, it looked almost too good to be true. We must have
hit roundoff, I guess.

Carol: Well, yes, with double precision you can’t get much further than 10~1°
in relative accuracy for a single calculation. I'm surprised we got as close as we
did. Most of the roundoff errors must have cancelled, in the 10,000 steps we
took in the next to last integration. But in the last run, where we took 100,000
steps, we accumulated more roundoff errors. When you are adding more steps,
you’ll get more roundoff, no matter how accurate each individual step may be.

Dan: But wait, just one thing: we haven’t checked yet whether we are still
getting the same results as before.

Carol: Ah, yes, safety first! The old code gave:

|gravity> ruby euler_modified_vector.rb | tail -1
0.400020239524913 0.343214474344616 0.0 -1.48390077762002 -0.0155803976141248

and we should get the same result for our new code, if we give it the same
parameters:

22.3. LEAPFROG

|gravity> ruby euler_modified_energy.rb | tail -1

0.400020239524913 0.343214474344616 0.0

-1.48390077762002

249

-0.0155803976141248 0.0

Dan: All is well.

22.3 Leapfrog

Carol: Finally, time to let the leapfrog algorithm tell us whether it is really
a second-order algorithm as well. I will start with leapfrog.rb. I will open
a new file leapfrog_energy.rb, and again I will add the same type of energy
output statements and diagnostics. Here it is:

require "vector.rb"

include Math

def acc(r)
r2 = r*r

r3 = r2 x sqrt(r2)

-r/r3
end

def energies(r,v)
ekin = 0.5%v*v
epot = -1/sqrt(r*r)
[ekin, epot, ekint+epot]

end

def print_pos_vel_energy(r,v,e0)
r.each{|x| printf("%.5g ", x)}
v.each{|x| printf("%.5g ", x)}
etot = energies(r,v).last
print (etot-e0)/e0

print "\n"
end

def print_diagnostics(t,r,v,e0)
ekin, epot, etot = energies(r,v)

STDERR.print
STDERR.print
STDERR.print
STDERR.print
STDERR.print
STDERR.print

" t =", sprintf("%.3g, ", t)

" E_kin = ", sprintf("%.3g, ", ekin)

"E_pot = ", sprintf("%.3g; ", epot)

"E_tot = ", sprintf("%.3g\n", etot)

" E_tot - E_init = ", sprintf("%.3g, ", etot-e0)
"(E_tot - E_init) / E_init = ", sprintf("%.3g\n", (etot-e0)/e0)

250 CHAPTER 22. ERROR SCALING FOR 2ND-ORDER SCHEMES

end
r=1[1, 0, 0].to_v
v = [0, 0.5, 0].to_v

e0 = energies(r,v).last

t=0

t_out =0

dt_out = 0.01

STDERR.print "time step = 7\n"
dt = gets.to_£f

STDERR.print "final time = 7\n"
t_end = gets.to_f

print_pos_vel_energy(r,v,e0)
t_out += dt_out
print_diagnostics(t,r,v,e0)

a = acc(r)
while t < t_end - 0.5%dt
v += 0.b*xaxdt
r += v*dt
a = acc(r)
v += 0.b*axdt
t += dt
if t >= t_out
print_pos_vel_energy(r,v,e0)
t_out += dt_out
end
end
print_diagnostics(t,r,v,e0)

22.4 Another Error Scaling Exercise

Carol: I'll just use the same parameters as I did while testing the modified
Euler scheme, for making the time steps smaller and smaller:

|gravity> ruby leapfrog_energy.rb > /dev/null
time step = 7
0.01
final time = 7
0.1
t =0, E_kin = 0.125, E_pot = -1; E_tot = -0.875

22.4. ANOTHER ERROR SCALING EXERCISE 251

E_tot - E_init = 0, (E_tot - E_init) / E_init = -0
t =0.1, E_kin = 0.129, E_pot = -1; E_tot = -0.875
E_tot - E_init = 1.19e-07, (E_tot - E_init) / E_init = -1.36e-07

|gravity> ruby leapfrog_energy.rb > /dev/null
time step = 7
0.001
final time = 7
0.1
t =0, E_kin = 0.125, E_pot = -1; E_tot = -0.875
E_tot - E_init = 0, (E_tot - E_init) / E_init = -0

t =0.1, E_kin = 0.129, E_pot = -1; E_tot = -0.875

E_tot - E_init = 1.19e-09, (E_tot - E_init) / E_init = -1.36e-09

|gravity> ruby leapfrog_energy.rb > /dev/null
time step = 7

0.0001
final time = 7
0.1
t =0, E_kin = 0.125, E_pot = -1; E_tot = -0.875

E_tot - E_init = 0, (E_tot - E_init) / E_init = -0
t =0.1, E_kin = 0.129, E_pot = -1; E_tot = -0.875
E_tot - E_init = 1.19e-11, (E_tot - E_init) / E_init = -1.36e-11

|gravity> ruby leapfrog_energy.rb > /dev/null
time step = 7

0.00001
final time = 7
0.1
t =0, E_kin = 0.125, E_pot = -1; E_tot = -0.875

E_tot - E_init = 0, (E_tot - E_init) / E_init = -0
t =0.1, E_kin = 0.129, E_pot = -1; E_tot = -0.875
E_tot - E_init = 1.15e-13, (E_tot - E_init) / E_init = -1.31e-13

252 CHAPTER 22. ERROR SCALING FOR 2ND-ORDER SCHEMES

|gravity> ruby leapfrog_energy.rb > /dev/null
time step = 7

0.000001
final time = 7
0.1
t =0, E_kin = 0.125, E_pot = -1; E_tot = -0.875

E_tot - E_init = 0, (E_tot - E_init) / E_init = -0
0.1, E_kin = 0.129, E_pot = -1; E_tot = -0.875
E_tot - E_init = -6.22e-15, (E_tot - E_init) / E_init

ct
I

22.5 Roundoff Kicks In

Erica: An amazing accuracy, and that after 100,000 steps! What happened? I
would have thought that the cumulative effects of 100,000 roundoff errors would
have spoiled the fun.

Carol: We were probably just lucky in the way the roundoff errors canceled.
Notice that the energy error at first got 100 times smaller, each time we made
the time step 10 times smaller, as it should for a second-order algorithm. But
in the last round, the improvement was a lot less than a factor 100.

We must be really close to the roundoff barrier now. Let me just make the time
step a factor two smaller. That should make the total error grow again. Wanna
bet?

Dan: No, but I do wanna see whether you’re right.

Carol: Here we go;

|gravity> ruby leapfrog_energy.rb > /dev/null
time step = 7

0.0000005
final time = 7
0.1
t =0, E_kin = 0.125, E_pot = -1; E_tot = -0.875

E_tot - E_init = 0, (E_tot - E_init) / E_init = -0
t =0.1, E_kin = 0.129, E_pot = -1; E_tot = -0.875
E_tot - E_init = 4.66e-15, (E_tot - E_init) / E_init

Dan: I should have accepted your challenge, and made a bet against you!

Carol: I must say, I'm surprised that the roundoff errors cancel so well. But
this just can’t go on. If shrink the time step factor by another factor of two.

= 7.11e-15

-5.33e-15

22.5. ROUNDOFF KICKS IN 253

|gravity> ruby leapfrog_energy.rb > /dev/null
time step = 7

0.00000025
final time = 7
0.1
t =0, E_kin = 0.125, E_pot = -1; E_tot = -0.875
E_tot - E_init = 0, (E_tot - E_init) / E_init = -0
t =0.1, E_kin = 0.129, E_pot = -1; E_tot = -0.875

E_tot - E_init = -2.74e-14, (E_tot - E_init) / E_init = 3.13e-14

So there! Now the errors are finally accumulating enough to show a worse
performance.

Dan: But you didn’t feel confident enough to ask us to bet, this time.

Carol: I should have! And yes, before you ask me, let us check whether we still
get the same output as before. What we got was:

|gravity> ruby leapfrog.rb | tail -1
0.583527377458303 -0.387366076048216 0.0 1.03799194001953 0.167802127213742 0.0

And what our new code gives is:

|gravity> ruby leapfrog_energy.rb | tail -1
0.583527377458303 -0.387366076048216 0.0 1.03799194001953 0.167802127213742 0.0

Good.

254 CHAPTER 22. ERROR SCALING FOR 2ND-ORDER SCHEMES

Chapter 23

Error Behavior for
2nd-Order Schemes

23.1 Modified Euler: Energy Error Peaks

Erica: I want to see how the error accumulates over a few orbits. We saw in
figure 21.2 how the total energy error grows monotonically, with energy conser-
vation getting a whack each time te stars pass close to each other. I wonder
whether our two second-order schemes show a similar behavior, or whether
things are getting more complicated.

Carol: Easy to do. As before, I will remind us what the orbit looked like, by
plotting the {x,y} coordinates of the position, in fig 23.1.

|gravity> ruby euler_modified_energy.rb > euler_modified_energy.out

time step = 7

0.001

final time = 7

10
t

0, E_kin = 0.125, E_pot = -1; E_tot = -0.875
E_tot - E_init = 0, (E_tot - E_init) / E_init = -0
t = 10, E_kin = 0.555, E_pot = -1.43; E_tot = -0.875
E_tot - E_init = 0.000118, (E_tot - E_init) / E_init = -0.000135

Erica: I remember now: even with a rather long time step, we got a very nice
looking orbit. You can barely see how it drifts away from the ideal ellipse.

Carol: And here is how the error grows, as a function of time, in fig 23.2.

Dan: Wow, that’s a very different behavior.

255

256 CHAPTER 23. ERROR BEHAVIOR FOR 2ND-ORDER SCHEMES

modifiedien‘ergy.out" usiné 12+

02 &

0.1 |

01 F
0.2 F ",

.,
.
Hy
03 | ey
it

-0.4 1
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Figure 23.1: Trajectory using a modified Euler algorithm. with dt = 0.001.

0.0007 — —
"euler_modified_energy.out" using 0:7 +
0.0006 + 4
+
+ +
0.0005 |- * +
+ * ¢
0.0004 - - N]
+
N +
0.0003 + 4
4 *
+
T
0.0002 - + A §
+ i
+ + + +
0.0001 & . v +
++ ++ + +
0 VJJr I+ + ++ 4
§ % ++
§ g +t+
;}+
-0.0001 § <

-0.0002
0

Figure 23.2: Energy error growth using a modified Euler algorithm. with dt =
0.001.

23.2. ALMOST TOO GOOD 257
23.2 Almost Too Good

Erica: I think I know what’s going on. The original forward Euler algorithm
was making terrible errors at pericenter. I'm sure that the backward Euler
algorithm would be making similarly terrible errors when the stars pass each
other at pericenter. Now the modified Euler scheme works so well because it
almost cancels those two errors.

In other words, during pericenter passage, the errors in forward and in backward
Euler grow enormously, and the attempt at canceling is relatively less successful.
But once we emerge from the close encounter, the attempts at canceling have
paid off, and the net result is a much more accurate energy conservation.

Carol: Hmm, that sounds too much like a hand-waving argument to me. I
would be more conservative, and just say that second-order algorithms are more
complicated to begin with, so I would expect them to have more complex error
behavior as well. Your particular explanation may well be right, but can you
prove that?

Erica: I’'m not sure how to prove it. It is more of a hunch.

Dan: Let’s not get too technical here. We want to move stars around, and we
don’t need to become full-time numerical analysts.

Erica: But I would like to see what happens when we make the time step
smaller.

Carol: Okay, I’ll make the time step ten time smaller, and plot the results in
fig 23.3.

|gravity> ruby euler_modified_energy.rb > euler_modified_energy2.out

time step = 7

0.0001
final time = 7
10
t =0, E_kin = 0.125, E_pot = -1; E_tot = -0.875

E_tot - E_init = 0, (E_tot - E_init) / E_init = -0
t = 10, E_kin = 0.554, E_pot = -1.43; E_tot = -0.875
E_tot - E_init = 1.17e-07, (E_tot - E_init) / E_init

Dan: Heh, look, compared to the error peaks at pericenter passage, the total
error drift looks a lot less than in the previous figure.

Erica: But the error peaks scale like a second-order algorithm: they have
become 100 times less high.

Carol: So the net error after the whole run must have scaled better than second-
order. And indeed, look at the output we got when I did the runs: after ten

-1.34e-07

258 CHAPTER 23. ERROR BEHAVIOR FOR 2ND-ORDER SCHEMES

7e-06

‘"eulerﬁmédiﬁedﬁenérgy2.out”‘using 07+
+ +
6206 - + N + -
+
+ * +
+
5¢-06 - * p
+ +
+ +
4
40-06 |- N + B
- +
+ +
3e-06 |- * R
" +
g +
* +
L +]
2¢-06] -
4
+ * *
++
10-06 | N - R
++ o +r ++
++ 44 +
++ h
. P2y i i Fid

1e-06 I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000

Figure 23.3: Energy error growth using a modified Euler algorithm. with dt =
0.0001.

time units, the energy error became a factor thousand smaller, when I decreased
the time step by a factor ten!

Dan: Almost too good to be true.

Carol: Well, a second-order scheme is guaranteed to be at least second order;
there is no guarantee that it doesn’t do better than that. It may be the particular
configuration of the orbit that gives us extra error cancellation, for free. Who
knows?

Dan: Let’s move on and see what the leapfrog algorithm shows us.

23.3 Leapfrog: Peaks on Top of a Flat Valley

Carol: Okay. First I’ll show the orbit, in fig 23.4, using leapfrog_energy.rb:

|gravity> ruby leapfrog_energy.rb > leapfrog_energy.out
time step = 7

0.001
final time = 7
10
t =0, E_kin = 0.125, E_pot = -1; E_tot = -0.875

E_tot - E_init = 0, (E_tot - E_init) / E_init = -0
t = 10, E_kin = 0.554, E_pot = -1.43; E_tot = -0.875

23.3. LEAPFROG: PEAKS ON TOP OF A FLAT VALLEY 259

0.4 T T
energy.out"using 1:2 +
it
ot
03 | el
'
o
o
&
0.2+ j»
I
F
01 e
I
£
or ¢
A
%
-0.1 %.
f
ﬁﬂ
0.2 + 4
ﬂh
4,
4,
e,
-0.3 ey, 4
ity
04 L L | L L
-0.2 0 0.2 0.4 0.6 0.8 1

Figure 23.4: Trajectory using a leapfrog algorithm. with dt = 0.001.

E_tot - E_init = 3.2e-07, (E_tot - E_init) / E_init =

Erica: Even better looking than the equivalent modified Euler orbit.
Carol: And here is how the error grows, as a function of time, in fig 23.5.

Dan: Now the valleys in between the peaks are all of the same height. I can’t
see any change from the one to the other.

Erica: That makes sense, actually. Remember, the leapfrog is time symmetric.
Imagine that the energy errors increased in one direction in time. We could
then reverse the direction of time after a few orbits, and we would play the
tape backward, returning to our original starting point. But that would mean
that in the backward direction, the energy errors would decrease. So that would
spoil time symmetry: if the errors were to increase in one direction in time, they
should increase in the other direction as well. The only solution that is really
time symmetric is to let the energy errors remain constant, neither decreasing
nor increasing.

Carol: Apart from roundoff.

Erica: Yes, roundoff is not guaranteed to be time symmetric. But as long as
we stay away from relative errors of the order of 1071°, what I said should hold
accurately. This most be the explanation for the fact that the baseline errors in
fig 23.5, in between the periastron peaks, remain so level.

Carol: Time to check what happens for a ten times smaller time step:

-3.65e-07

260 CHAPTER 23. ERROR BEHAVIOR FOR 2ND-ORDER SCHEMES

0.0003 T

. + "Ieépfrog}energy.out" hsing 07+
b4
+ +
0.00025 +
N +
+
0.0002 - + A
A
4
0.00015 - . - 1
+ *
0.0001 N E
R -
+ i
5e-05 |- —
e E -
++ hs
++ ++
0 + + . 4

-5e-05
0

I I I I
200 400 600 800 1000

Figure 23.5: Energy error growth using a leapfrog algorithm. with dt = 0.001.

|gravity> ruby leapfrog_energy.rb > leapfrog_energy2.out
time step = 7

0.0001
final time = 7
10
t =0, E_kin = 0.125, E_pot = -1; E_tot = -0.875

E_tot - E_init = 0, (E_tot - E_init) / E_init = -0
t = 10, E_kin = 0.554, E_pot = -1.43; E_tot = -0.875
E_tot - E_init = 3.2e-09, (E_tot - E_init) / E_init = -3.65e-09

Everything does seem to scale as we expect from a second-order scheme: the
height of the peaks is a hundred times less, in fig 23.6 compared to fig 23.5.

Erica: And so is the scaling for the total error at the end of the whole run: it,
t00, is a hundred times smaller.

23.4 Time Symmetry

Dan: But wait a minute, you just argued so eloquently that the leapfrog algo-
rithm should make almost no error, in the long run.

Erica: Yes, either in the long run, or after completing exactly one orbit — or
any integer number of orbits, for that matter. But in our case, we haven’t done
either. After ten time units, we did not return to the exact same place.

23.4. TIME SYMMETRY 261

3e-06 T — T T
. + IeapfrogjsergyZ.out using 0:7 +,
M
+ +
2.50-06 + o4
+
+
+
2606 |- + 4 A
+ +
¥
150-06 - * 1
¥
+ +
+ +
1e-06 - + q
"
¥
+ +
+ +
5e-07 - + 4
-+
* + +,
+ + +
* + - i
0 w‘rr j* r jwrr j r

5e-07 I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000

Figure 23.6: Energy error growth using a leapfrog algorithm. with dt = 0.0001.

You see, during one orbit, the leapfrog can make all kind of errors. It is only
after one full orbit that time symmetry guarantees that the total energy neither
increases or decreases. And compared to other algorithms, the leapfrog would
do better in the long run, even if you would not stop after an exact integer
number of orbits, compared to a non-time-symmetric scheme, such as modified
Euler. The latter would just keep building up errors at every orbit, adding the
same systematic contribution each time.

Dan: I'd like to see that. Let’s integrate for an exact number of orbits.

Erica: Good idea. I also like to test the idea, to see how well it works in
practice. But first we have to know how long it takes for our stars to revolve
around each other.

Let’s see. In the circular case that we have studied before, while we were
debugging, we started with the following initial conditions, where I am adding
the subscript ¢ for circular:

r.(0) = {1,0,0} ; v.(0) = {0, 1,0} (23.1)

With Eq. (20.17), we have for the total energy, actually the total specific energy:

Bo= () - =112 282

On a circular orbit, the speed remains constant. Since the circumference of the

262 CHAPTER 23. ERROR BEHAVIOR FOR 2ND-ORDER SCHEMES

orbit has a length L = 27. The orbital period, the time to go around the whole
orbit, is therefore:

T, = = —on (23.3)

We can now do a similar analysis for the current case in which we are integrating
an eccentric orbit, for which I will use the subscript e. We start with the same
position, but with an initial speed that is only half as large:

re(0) = {1,0,0}) ve(0) = {0, %7 0} (23.4)

This means that the total energy is now:

=--1=—c (23.5)

For the circular orbit, the diameter has a length of 2, and therefore the semi-
major axis has a length a. = 1. Since the semi-major axis a of a Kepler orbit
is inversely proportional to the total energy, we can use the results from the
circular orbit to find the semi-major axis for our eccentric orbit:

_1
(e = —a, = _—31 =—= (23.6)
8

Finally, Kepler’s third law tells us that the orbital period scales with the three-
halves power of the energy, so T, /T, = (ae/a.)*/?, or:

3/2 3/2
Qe 4
T.=(— T.=2| = 23.7

23.5 Surprisingly High Accuracy

Dan: Let’s bring up a calculator on your screen.

Carol: Why not stay with Ruby and use irb? We can use the fact that
acos(0) = /2

|lgravity> irb

include Math

Object

pi = 2*acos(0)
3.14159265358979

t = (4.0/7.0)**1.5 * 2 * pi

23.5. SURPRISINGLY HIGH ACCURACY 263

2.7140809410828
quit

Dan: Ah, so four orbits would be close to our total integration time of ten time
units, but just a bit longer.

Erica: Yes, and indeed, if you look at fig. 21.1, you can see that our stars have
almost completed four orbits by time ¢ = 10, but not quite yet.

Carol: Let’s see whether we can find a good time to stop. Since we do an
output every At = 0.01, it would be nice to find an integer number of orbits
that would also be close to a multiple of At, so that we can end the integration
at that time. TI'll try a few values:

|gravity> irb
include Math
Object

pi = 2*acos(0)
3.14159265358979
t = (4.0/7.0)*%1.5 *x 2 % pi
2.7140809410828
4 x t
10.8563237643312
6 * t
16.2844856464968
7T *xt
18.9985665875796
quit

Ah, seven orbits brings us very close to ¢t = 19.00. Okay, let me integrate for 19
time units:

|gravity> ruby leapfrog_energy.rb > /dev/null
time step = 7

0.001
final time = 7
19
t =0, E_kin = 0.125, E_pot = -1; E_tot = -0.875

E_tot - E_init = 0, (E_tot - E_init) / E_init = -0
t = 19, E_kin = 0.125, E_pot = -1; E_tot = -0.875
E_tot - E_init = 2.5e-13, (E_tot - E_init) / E_init =

Erica: That’s an amazing accuracy, for such a large time step! Can you try an
even larger time step?

-2.85e-13

264 CHAPTER 23. ERROR BEHAVIOR FOR 2ND-ORDER SCHEMES

Carol: Sure, why not ten times larger:

|gravity> ruby leapfrog_energy.rb > /dev/null
time step = 7

0.01
final time = 7
19
t =0, E_kin = 0.125, E_pot = -1; E_tot = -0.875

E_tot - E_init = 0, (E_tot - E_init) / E_init = -0
t = 19, E_kin = 0.125, E_pot = -1; E_tot = -0.875
E_tot - E_init = 1.02e-10, (E_tot - E_init) / E_init = -1.17e-10

Erica: Still a very good result. Remind me, what did we get when we did our
shorter standard integration of ten time units?

Carol: Here it is

|gravity> ruby leapfrog_energy.rb > /dev/null
time step = 7

0.01
final time = 7
10
t =0, E_kin = 0.125, E_pot = -1; E_tot = -0.875

E_tot - E_init = 0, (E_tot - E_init) / E_init = -0
t = 10, E_kin = 0.553, E_pot = -1.43; E_tot = -0.875
E_tot - E_init = 3.18e-05, (E_tot - E_init) / E_init = -3.63e-05

And indeed a lot worse than integrating for 19 time units. I begin to see the
strength of time symmetric integration schemes! Many orders of magnitude gain
in final accuracy, as long as you return to the same location in the orbit that
you started from!

23.6 Squaring Off

Erica: How about running it ten times longer? I'm curious to see what will
happen.

Carol: Let’s find another example of an integer number of orbits, close to a
multiple of At = 0.01. Here is one: 201 orbits will take a total time ¢ =
545.530269157643, close to t = 545.53. That should be good enough. Here
goes:

23.6. SQUARING OFF 265

|gravity> ruby leapfrog_energy.rb > /dev/null
time step = 7
0.01
final time = 7
545.53
t =0, E_kin = 0.125, E_pot = -1; E_tot = -0.875
E_tot - E_init = 0, (E_tot - E_init) / E_init = -0
t = 546, E_kin = 0.126, E_pot = -1; E_tot = -0.875
E_tot - E_init = 2.21e-08, (E_tot - E_init) / E_init = -2.53e-08

Erica: Clearly, we're losing accuracy, but I bet we're doing a lot better with
leapfrog than with modified Euler here!

Dan: So now you're starting to bet as well. I think you’re right, but let’s check:

|gravity> ruby euler_modified_energy.rb > /dev/null
time step = 7
0.01
final time = 7
545.53
t =0, E_kin = 0.125, E_pot = -1; E_tot = -0.875
E_tot - E_init = 0, (E_tot - E_init) / E_init = -0
t = 546, E_kin = 0.0293, E_pot = -0.0886; E_tot = -0.0594
E_tot - E_init = 0.816, (E_tot - E_init) / E_init = -0.932

That’s pretty dramatic, I'd say! Modified Euler just falls apart, after a couple
hundred orbits, for such a large time step. And the leapfrog just keeps going.
Carol: At least for periodic orbits, such as this one. But I must say, I'm
impressed too.

Erica: I had wondered why so many people use the leapfrog algorithm. I'm
beginning to see that it has some real advantages!

Carol: So what’s next. Do we want to start playing with third-order or fourth-
order integration schemes?

Dan: I’d rather go beyond the two-body problem, to the real N-body problem.
It’s time to do start simulating a real star cluster, rather than just one double
star!

266 CHAPTER 23. ERROR BEHAVIOR FOR 2ND-ORDER SCHEMES

Chapter 24

Literature References

[to be provided]

267

