
The performance of GRAPE-DR for
dense matrix operations

Jun Makino, TiTech,
Hiroshi Daisaka, Hitotsubashi Univ.

Toshiyuki Fukushige, KFCR,

Yutaka Sugawara, Mary Inaba and Kei Hiraki, U. Tokyo

ICCS2011 Jun 1-3, 2011, Singapore

Talk structure

• GRAPE-DR

• Matrix multiplication

• LU decomposition

• Parallel LU decomposition

• Summary

GRAPE-DR

• Accelerator for HPC

• Development: FY2004-2008

(U-Tokyo+NAOJ+...)

I moved from UT to NAOJ in 2006 and to TiTech in 2011

• “Follow-up” for GRAPE (GRAvity PipE),

special-purpose computer for gravitational

many-body problems

• New architecture — wider application range than

previous GRAPEs

Basic concept of GRAPE

• With N -body simulation, almost all calculation goes to the
calculation of particle-particle interaction.

• This is true even for schemes like Barnes-Hut treecode or
FMM.

• A simple hardware which calculates the particle-particle
interaction can accelerate overall calculation.

• Original Idea: Chikada (1988)

Host
Computer

GRAPE

Time integration etc. Interaction calculation

Chikada’s idea (1988)

• Hardwired pipeline for force calculation (similar to Delft
DMDP)

• Hybrid Architecture (things other than force calculation
done elsewhere)

GRAPE-1 to GRAPE-6

GRAPE-1: 1989, 308Mflops

GRAPE-4: 1995, 1.08Tflops

GRAPE-6: 2002, 64Tflops

From GRAPE-6 to GRAPE-DR

Chip development cost has become too high.

Year Machine Chip initial cost process

1992 GRAPE-4 200K$ 1µm

1997 GRAPE-6 1M$ 250nm

2004 GRAPE-DR 4M$ 90nm

2011? GDR2? > 10M$ 40nm?

How to deal with high initial cost?
Several options:

• Forget about making hardware, use x86 or GPU

• Use FPGA

• Develop hardware with wider range of application

— our decision

– an SIMD processor chip with very large

number of processing cores (512)

– simple on-chip network (broadcast/reduction

tree)

– particle-particle interaction, dense matrix

operation, and other computationally

expensive applications

GRAPE-DR Processor architecture

GP Reg
 32W

Local Mem
 256W

T Reg

+

x

M
ultiplexor

M
ultiplexor

INT
ALU

SHMEM
Port

SHMEM
Port

A

B

Mask(M)Reg

PEID
BBID

• DP Float Mult

• DP Float add/sub

• Integer ALU

• 32-word registers

• 256-word memory

• communication

port

Chip architecture

B
roadcast M

em
ory

Broadcast
same data to
all PEs

Control Processor

(in FPGA chip)

Memory Write Packet
Instruction

Broadcast Block 0

Result output port

External MemoryHost Computer

SING Chip

Result

Result Reduction and Output
Network

any processor
can write (one
at a time

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

• 32 PEs organized

to “broadcast

block” (BB)

• BB has shared

memory.

• Input data is

broadcasted to all

BBs.

• Outputs from BBs

go through

reduction network

(sum etc)

PE Layout

Black: Local Memory

Red: Reg. File

Orange: FMUL

Green: FADD

Blue: IALU

0.7mm by 0.7mm

800K transistors

0.1W@400MHz

800Mflops/400Mflops

peak (SP/DP)

Processor board

PCIe x16 (Gen 1) interface

Altera Arria GX as DRAM

controller/communication

interface

• Around 200-250W

power consumption

• 819Gflops DP peak

(400MHz clock)

• Available from K&F

Computing Research

(www.kfcr.jp)

Processor board

SINGFPGA
CP

DRAM

SINGFPGA
CP

DRAM

SINGFPGA
CP

DRAM

SINGFPGA
CP

DRAM

PCIe
Switch

x16 PCIe

x4

4 FPGAs are connected in a bidirectional ring (used

for broadcast/reduction)

Performance for Dense matrix
operations

Accelerators can make DGEMM (matrix-matrix

multiplication) fast.

Two practical problems

• The actual efficiency of DGEMM

– kernel efficiecy

– communication/startup overhead

• Overall efficiency

– Operations other than DGEMM

(Amdahl’s law)

DGEMM implementation

Calculate: C → C + A × B, conceptually we do:

1. Store B to on-board memory of GRAPE-DR

2. Load (part of) A to on-chip memory

3. load b (one vector of B) to registers of

4. calculate m = A × b

5. output m (directly from register to PCIe

interface)

Steps 3-5 are done concurrently. In addition,

addition (C → C + M) is done on host CPU, also

concurrently

Details:

• Each processing core stores 32 × 8 matrix and

length 32 vectors

• Summation of 16 partial products on different

cores is done by hardware adder tree, and thus no

additional overhead

• Further summation of 4 results from 4 chips is

also done in adders in FPGAs

Calculation timechart

Send BHost

Send A Send A

Receive M=AB Receive M, Add Prev MtoC

FPGA Store B to DRAM Send B to chip
Receive M from chip
and send to Host

Send B to chip
Receive M from chip
and send to Host

Chip Receive B
Calculate M=A*B
Send M

Receive B
Calculate M=A*B
Send M

Receive
A

Receive
A

• Transfers of A and B from host are not hidden

• Everything else is done concurrently with

calculation

• We made transfer of A hidden, but X58 chipset

became unstable...

DGEMM performance

M=N, K=2048:

722 Gflops (88%

peak)

N=K=2048, 490

Gflops

FASTEST

single-card

performance on

the planet.

Fermi: 300Gflops
(60% peak)
AMD Cypress:
470Gflops (87% peak)

LU-decomposition tuning

Almost every previously known techniques

• Use large block

(NB=2048)

• right-looking form

• TRSM converted to

GEMM

Problem: row swap is

very slow – stride ac-

cess

P
iv

ot
 s

ea
rc

h Row swap

Accelerate row-swapping

• Use row-major order to make row swapping fast

• Transpose matrix during recursive column

decomposition to make pivot search and narrow

band matrix operation fast

Some other tunings, such as

• Use recursive scheme for TRSM

(calculation of L−1)

LU-decomposition performance

Speed in Gflops as

function of Matrix

size

Top: GRAPE-DR

Bottom: host CPU

480 Gflops (58% of

theoretical peak) for

N=50K

x11 speedup over host

CPU

HPL (parallel LU)

• Everything done for single-node

LU-decomposition

• Both column- and row-wise communication are

hidden

• TRSM further modified: calculate LT −1 instead

of T −1U

• x2 performance compared to HPL 1.04a

HPL performance

Date N # Nodes Speed Green500

Efficiency

Jun 2010 240K 64 24TF #1

50% (Little)

Nov 2010 432K 81 37.4TF #2

56%

Comparison with other works

(From Nov 10 Top 500 list)

Accelerator CPU Performance Acceleration

/System /Clock /Efficiency over host

Fermi Xeon 6c 2.566PF 2.83

Tianhe-1A 2.93GHz 54.4%

Fermi Xeon 6c 1.192PF 6.13

Tsubame 2.0 2.93(3.19?) GHz 53.5%

GRAPE-DR Core i7 4c 37.4TF 10.6

3GHz 53.2%

Similar efficiency with much higher acceleration

ratio.

Dark side of tuning...

• X58 DMA performance seems to be limited to

6.4GB/s (sum of upstream and downstream,

theoretical limit is 19.2GB/s)

• It starts to drop data silently when busy.

– PIO write

– DMA write

Workaround we used:

• Do not use PIOW

• Do not use DMA read and write concurrently

Similarity and Difference with GPUs

GRAPE-DR GPU (Fermi)

SIMD Yes Yes

Design rule 90nm 40nm

FPUs 512 448

Memory bandwidth ∼ 5GB/s > 100GB/s

transistors 400M 3G

Peak DP performance 205GF 515 Gflops

Power consumption 50W 250W

Performance per watt 4.0GF/W 2.1GF/W

DGEMM Efficiency ∼ 90% ∼ 60%

Similarity and Difference with GPUs

• Both GRAPE-DR and GPUs achieved very high

performance (and performance per watt) using

SIMD many-core architecture

• The design of GRAPE-DR is much more

extreme, with 1/10 transistors per FPU.

• Part of the reason of this difference is the limited

memory bandwidth.

• Reduction in transistor count resulted in high

performance/W.

Summary

• GRAPE-DR is an SIMD accelerator for scientific

computing

• With 90nm technology, one GRAPE-DR chip

integrates 512 cores and provides 205Gflops

(Double precision)

• In our DGEMM implementation, all data

transfers, except the transfer of input matrices

from host to GRAPE-DR card, are hidden.

• 4-chip card DGEMM performance 722 Gflops,

LU decomposition ∼ 500Gflops

• Accelerators require new algorithms, not just

porting and tuning

Detailed breakdown of calculation
time
Nswap=0 cpsec = 184.784 wsec=108.456 488.994 Gflops
swaprows time= 5.09831e+09 ops/cycle=0.181402
scalerow time= 1.3279e+08 ops/cycle=6.9647
trans rtoc time= 3.79496e+09 ops/cycle=0.243703
trans ctor time= 2.42686e+09 ops/cycle=0.381087
trans mmul time= 2.74357e+09 ops/cycle=5.05642
tr nr cdec time= 3.68971e+09 ops/cycle=0.250655
trans vvmul time= 7.16809e+08 ops/cycle=1.29022
trans findp time= 2.97246e+09 ops/cycle=0.311138
solve tri u time= 5.95504e+09 ops/cycle=7.22212e-06
solve tri time= 4.00307e+10 ops/cycle=94.6313
trans mmul8 time= 9.15249e+08 ops/cycle=8.08387
trans mmul4 time= 4.9365e+08 ops/cycle=7.49393
trans mmul2 time= 1.33296e+09 ops/cycle=1.38765

Detailed breakdown of calculation
time (cont’d)
DGEMM2K time= 2.77404e+11 ops/cycle=184.353
DGEMM1K time= 1.75294e+10 ops/cycle=54.0258
DGEMM512 time= 1.64471e+10 ops/cycle=28.7905
DGEMMrest time= 3.16284e+10 ops/cycle=14.9713
col dec t time= 1.26994e+10 ops/cycle=2.33042
Total time= 3.65573e+11 ops/cycle=145.072

Next-Generation GRAPE

Question:

Any reason to continue hardware development?

• GPUs are fast, and getting faster

• FPGAs are also growing in size and speed

• Custom ASICs practically impossible to make

Next-Generation GRAPE

Question:

Any reason to continue hardware development?

• GPUs are fast, and getting faster

• FPGAs are also growing in size and speed

• Custom ASICs practically impossible to make

Answer?

• GPU speed improvement might have slowed down

• FPGAs are becoming far too expensive

• Power consumption might become most critical

• Somewhat cheaper way to make custom chips

GPU speed improvement slowing
down?

Clear “slowing down”

after 2006 (after G80)

Reason: shift to more
general-purpose
architecture

Discrete GPU market is
eaten up by unified
chipsets and unified
CPU+GPU

But: HPC market is not
large enough to support
complex chip development

FPGA

“Field Programmable Gate Array”

• “Programmable” hardware

• “Future of computing” for the last two decades....

• Telecommunication market needs: large and fast

chips (very expensive)

Power Consumption

1kW · 1 year ∼ 1000 USD

You (or your institute) might be paying more money

for electricity than for hardware.

Special-purpose hardware is quite energy efficient.

Chip Design rule Gflops/W

GRAPE-7(FPGA) 65nm > 20

GRAPE-DR 90nm 4

GRAPE-6 250nm 1.5

Tesla C2050 40nm < 2

Opteron 6128 45nm < 1.2

Structured ASIC

• Something between FPGA and ASIC

• eASIC: 90nm (Fujitsu) and 45nm (Chartered)

products.

• Compared to FPGA:

– 3x size

– 1/10 chip unit price

– non-zero initial cost

• Compared to ASIC:

– 1/10 size and 1/2 clock speed

– 1/3 chip unit price

– 1/100 initial cost (> 10M USD vs ∼ 100K)

GRAPEs with eASIC

• Completed an experimental design of a

programmable processor for quadruple-precision

arithmetic. 6PEs in nominal 2.5Mgates.

• Started designing low-accuracy GRAPE hardware

with 7.4Mgates chip.

Summary of planned specs:

• around 8-bit relative precision

• 100-200 pipelines, 300-400 MHz, 2-5Tflops/chip

• small power consumption: single PCIe card can

house 4 chips (10 Tflops, 50W in total)

Will this be competitive?

Rule of thumb for a special-purpose computer

project:

Price-performance goal should be more than 100

times better than that of a PC available when you

start the project.

— x 10 for 5 year development time

— x 10 for 5 year lifetime

Compared to CPU: Okay

Compared to GPU: ??? (Okay for electricity)

Will this be competitive?

Rule of thumb for a special-purpose computer

project:

Price-performance goal should be more than 100

times better than that of a PC available when you

start the project.

— x 10 for 5 year development time

— x 10 for 5 year lifetime

Compared to CPU: Okay

Compared to GPU: ??? (Okay for electricity)

Will GPUs exist 10 years from now?

