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Who am 17

Current position: Director,
Center for Computational As-
trophysics (CfCA), National
Astronomical Observatory of
Japan

CfCA computers: Cray XT4
(812 quad-core nodes), NEC -~ .~ =
SX-9, several GRAPE hard- <l
wares....

What I have been doing for the last 20 years:
Developing GRAPE and similar hardwares for astrophysical
N-body simulations, using them for research.



Talk structure

e Short history of GRAPE
— GRAPE machines
e GRAPE-DR

— Architecture
— Comparison with other architecture

— Development status

® Next-Generation GRAPE

— Future of accelerators



Claims by the organizer:

“Accelerated Computing” is an old concept that is recently
redefined in High-Performance Computing. It was started by
dedicated machines like GRAPEs, but a great revolution has
been occurring fueled by recent advancement in GPU
Computing, both in hardware and in software such as CUDA C
and OpenCL.
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You can see I'd disagree.




Short history of GRAPE

e Basic concept
e GRAPE-1 through 6

e Software Perspective



Basic concept (As of 1988)

e With N-body simulation, almost all calculation goes to the
calculation of particle-particle interaction.

e This is true even for schemes like Barnes-Hut treecode or
FMM.

e A simple hardware which calculates the particle-particle
interaction can accelerate overall calculation.

e Original Idea: Chikada (1988)

( ) ( )
Host — GRAPE
Computer
\_ y, \_ y,
Time integration etc. Interaction calculation

Accelerated Computing two decades ago I



Chikada’s idea (1988)
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e Hardwired pipeline for force calculation (similar to Delft
DMDP)

e Hybrid Architecture (things other than force calculation
done elsewhere)



GRAPE-1 to GRAPE-6

i | L ~ GRAPE-4: 1995, 1.08Tflops
et lms s ARl GRAPE-6: 2002, 64Tflops

2 GRAPE-1: 1989, 308Mflops



Performance history
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(GRAPE-4),
GRAPE has been
faster than
general-purpose
computers.

Development cost
was around 1/100.



Software development for GRAPE

GRAPE software library provides several basic
functions to use GRAPE hardware.

e Sends particles to GRAPE board memory

e Sends positions to calculate the force and start
calculation

e get the calculated force (asynchronous)

User application programs use these functions.
Algorithm modifications (on program) are necessary
to reduce communication and increase the degree of
parallelism



Analogy to BLAS

Level BLAS Calc:Comm Gravity
0 c=c-axs 1:1 fii = f(xi, x;) 1:1

2 GEMYV N2 . N2 fz = ij(wi,a:j) N2 : N
for multiple 2
3 GEMM N3 . N2 fk,z’ = Ejf(mk,i, wk,j) N2 : N
“Multiwalk”
e Calc >Comm essential for accelerator
e Level-3 (matrix-matrix) essential for BLAS

e Level-2 like (vector-vector) enough for gravity

e Treecode and/or short-range force might need
Level-3 like API.



Porting issues

e Libraries for GRAPE-4 and 6 (for example) are
not compatible

e Even so, porting was not so hard. The calls to
GRAPE libraries are limited to a fairly small
number of places in application codes.

e Backporting the GRAPE-oriented code to
CPU-only code is easy, and allows very efficient
use of SIMD features.

e In principle the same for GPGPU or other
accelerators.



Real-World issues with “Porting”
— Mostly on GPGPU....

e Getting something run on GPU is not difficult

e Getting a good performance number compared

with non-optimized, single-core x86 performance
is not so hard. (20x!, 120x!)



Real-World issues with “Porting”
continued

e Making it faster than 10-year-old GRAPE or
highly-optimized code on x86 (using SSE/SSE2)
is VERY, VERY HARD (you need Keigo or

Evghenii...)
e These are *mostly™ software issues

e Some of the most serious ones are limitations in
the architecture (lack of good reduction operation
over processors etc)

I’ll return to this issue later.



Quotes

From: Twelve Ways to Fool the Masses When Giving
Performance Results on Aecelerators Parallel Computers
(D. H. Bailey, 1991)

1. Quote only 32-bit performance results, not 64-bit results.
2. Present performance figures for an inner kernel, and then
represent these figures as the performance of the entire
application.
6. Compare your results against scalar, unoptimized code on
Xeons Crays.
7. When direct run time comparisons are required, compare
with an old code on an obsolete system.
8. If MFLOPS rates must be quoted, base the operation count
on the parallel implementation, not on the best sequential
implementation.
12. If all else fails, show pretty pictures and animated videos,
and don’t talk about performance.

History repeats itself — Karl Marx



“Problem” with GRAPE approach

e Chip development cost becomes too high.

Year Machine Chip initial cost process
1992 GRAPE-4 200K$ 1pm
1997 GRAPE-6 1M$ 250nm
2004 GRAPE-DR 4M$ 90nm
20107 GDR2? > 10M$ 45nm?

Initial cost should be 1/4 or less of the total budget.
How we can continue?



Next-Generation GRAPE

— GRAPE-DR
e Planned peak speed: peak 2 Pflops SP/1Pflops
DP
e New architecture — wider application range than

previous GRAPEs
e primarily to get funded

e No force pipeline. SIMD programmable processor

e Completion year: FY 2008-2009



Processor architecture
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Chip architecture
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32 PEs organized to
“broadcast block” (BB)

BB has shared memory.
Various reduction
operation can be applied
to the output from BBs
using reduction tree.

Input data is broadcasted
to all BBs.

“Solved” data movement
problem: Very small
number of long wires and

off-chip I0O.



Computation Model

Parallel evaluation of

R; =3 f(wi,yj )
J

e parallel over both ¢ and 5 (Level-2 gravity)
e y; may be omitted (trivial parallelism)

e S;i => f(xik, Yr,j) also possible (Level-3 BLAS)
k



The Chip

Sample chip delivered May 2006
90nm TSMC, Worst case 65WQ@500M Hz



PE Layout

[ I

B =TT ] _" LT Black: Local Memory

LR RN e v o e S |

Red: Reg. File
Orange: FMUL
Green: FADD

Blue: TALU

0.7mm by 0.7mm
800K transistors
0.13W@500MHz
1Gflops/512Mflops
peak (SP/DP)




Chip layout
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Processor board

PCle x16 (Gen 1) interface
Altera Arria GX as DRAM
controller /communication
interface

e Around 200W power
consumption

e 800Gflops DP peak
(400MHz clock)

e Available from K&F
Computing Research



GRAPE-DR cluster system




GRAPE-DR cluster system

e 128-node, 128-card system (105TF theoretical
peak @ 400MHz)

e Linpack measured: 24 Tflops@400MHz (with
HPL 1.04a. still lots of tunings necessary....)

e Gravity code: 340Gflops/chip, working

e Host computer: Intel Core i74+X58 chipset, 12GB
memory

e network: x4 DDR Infiniband

e plan to expand to 384-board system RSN.
(Cables and switches are arriving now.)



Software Environment

e Kernel libraries

— DGEMM
+ BLAS, LAPACK

— Particle-Particle interaction

e Assembly Language
e HLL, OpenMP-like interface

Idea based on PGDL (Hamada, Nakasato)
— pipeline generator for FPGA



HLL example
Nakasato (2008), based on LLVM.

VARI xi, yi, zi;

VARJ xj, yvj, zj, mj;
VARF fx, fy, fz;
dx=x1-X];

dy=yi-yJ;

dz=z1i-zj;

r2= dx*dx+dy*dy+dz*dz;
rinv = rsqrt(r2);
mr3inv = rinvrinvrinv*mj;
fx+= mr3inv*dx;

fy+= mr3invx*dy;

fz+= mr3inv*dz;



Driver functions

Generated from the description in the previous slide

int SING_send_j_particle(struct grape_j_particle_struct *jp,
int index_in_EM) ;

int SING_send_i_particle(struct grape_i_particle_struct *ip,
int n);

int SING_get_result(struct grape_result_struct *rp);

void SING_grape_init();

int SING_grape_run(int n);



DGEMM kernel in assembly
language (part of)

## even loop
bm b10 $1rOv
bm bll $1r8v

dmulO
dmull
dmulO
dmull
dmulO
dmull

$1r0 $1mOv
$1r0 $1mOv
$1r0 $1m256v
$1r0 $1m256v
$1r2 $1m8v
$1r2 $1m8v

Ve Wwe we Ve Ve wo

$1r14 $1m504v ;
$1r14 $1mb04v ;
$fb $ti $1r4ov

“VLIW?”-style

bm $1r32v cO O
upassa $fb $t $t

upassa $fb $t $t

faddAB $fb $ti $1rb6v ;

faddA $fb $1r48v $t

faddA $fb $ti $1r32v
faddA $fb $1r56v $t

: rrn fadd cO 2656 f1t721
, 1dp O
faddAB $fb $ti $1r48v ;

bm $1r40v cl1 O

bm $1r32v c2 1

: bm $1rd40v c63 31



OpenMP-like compiler
Goose compiler (Kawai 2009)

#pragma goose parallel for icnt(i) jent(j) res (ali] [0..2])
for (i1 = 0; i < ni; i++) {
for (j = 0; j < nj; j++) {
double r2 = eps2[i];
for (k = 0; k < 3; k++) dx[k] = x[jI1[k] - x[i] [k];
for (k = 0; k < 3; k++) r2 += dx[k]*dx[k];
rinv = rsqrt(r2);
mf = m[jl*rinv*rinv*rinv;
for (k = 0; k < 3; k++) al[ill[k] += mf * dx[k];

+

Translated to assembly language and API calls.
Emit very efficient code also for GPGPUs or x86 SIMD
extensions.



Performance and Tuning examples

e HPL (LU-decomposition)

e Gravity
Based on the work by H. Koike (Thesis work)



LU-decomposition
DGEMM performance
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the planet. (HD5870/5970 might be faster...)



DGEMM tuning

Key to high performance: Overlapping
communication and Calculation

e PE kernel calculates C(8,2)= A(32,8) * B(8,2)
e 512 PEs calculate C(256,2)= A(512,256)* B(512,2)
e Next B sent to chip while calculation

® Previous C sent to host while calculation

® Next A sent from host to GDR card while calculation

Everything other than the transfer of B from host
to GDR card is hidden.




What limits the HPL performance?

e CPU/Accelerator speed ratio
e CPU/Accelerator communication speed
e Node-node communication

® Size of the main memory

Large main memory can hide whatever performance
problems for HPL benchmark.



Some numbers

Machine speed (per node) memory (per node) ratio

GHops GB
Jaguar 125 32 4
Tianhe-1 200 32 6
FX-1 40 32 1.3
ES2 1600 1024 1.6

GDR 800 12 67



LU-decomposition performance
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LU-decomposition tuning

e Almost every know techniques
— except for the concurrent use of CPU and GDR (we use
GDR for column factorization as well...)
— right-looking form
— TRSM converted to GEMM

— use row-major order for fast O(IN?) operations
e Several other “new” techniques

— Transpose matrix during recursive column
decomposition

— Use recursive scheme for TRSM (calculation of L™1)



HPL (parallel LU) tuning

e Everything done for single-node LU-decomposition
e Both column- and row-wise communication hidden

e TRSM further modified: calculate LT ! instead of T-1U

e More or less working, tuning still necessary

Two months for coding and debugging so far.

N=30K, single node: 290Gflops
N=96K, 9 nodes: 2613 Gflops



Gravity kernel performance
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Comparison with GPGPU

Pros:

e Significantly better silicon usage
512PEs with 90nm
40% of the peak DP speed of HD5870 with 1/2 clock and

1/5 transistors

e Better efficiency — Designed for scientific applications
hardwired reduction, small communication overhead, etc

Cons:

e Higher cost per silicon area...
(small production quantity)

e Longer product cycle... 5 years vs 1 year

Good implementations of N-body code on GPGPU are there
(Hamada, Nitadori, ...)



GPGPU performance for N-body
simulation

e Impressive for a trivial N? code with shared
timestep (x100 performance!!!) — actually x10
compared to a good SSE code.

e ~ x5 for production-level algorithms (tree or
individual timestep), ~ x2 or less for the same
price, even when you buy GTX295 cards and not
Tesla and after Keigo developed new algorithms
(without him, who knows?).



GPGPU tuning difficulties
e huge overhead for DMA and starting threads
(much longer than MPI latency with IB)

e lack of low-latency communication between
threads

GRAPE and GRAPE-DR solution

e PIO for sending data and commands from host to
GDR

e hardware support for broadcast and reduction

e a number of other small improvements

Near-peak performance with minimal bandwidth
for both on-board memory and host.




Next-Generation GRAPE(-DR)

Question:
Any reason to continue hardware development?

e GPUs are fast, and getting faster
e FP(GGAs are also growing in size and speed

e Custom ASICs practically impossible to make



Next-Generation GRAPE

Question:
Any reason to continue hardware development?

e GPUs are fast, and getting faster

e FP(GAs are also growing in size and speed

e Custom ASICs practically impossible to make
Answer?

e GPU speed improvement might slow down

e FP(GAs are becoming far too expensive

e Power consumption might become most critical

e Somewhat cheaper way to make custom chips



GPU speed improvement slowing
down?

'SP peak performance
1000

Clear ‘“slowing down”
after 2006 (after G80)

Reason: shift to more
general-purpose
architecture

CPUs | Discrete GPU market is
o=ttt eaten up by unified
2004 2006 2008 2010 , ,
chipsets and unified

year CPU+GPU




Structured ASIC

e Something between FPGA and ASIC

e From FPGA side: By using one or few masks for
wiring, reduce the die size and power
consumption by a factor of 3-4.

e eASIC: 90nm (Fujitsu) and 45nm (Chartered)
products.

e 45nm: up to 20M gates, T00MHz clock. 1/10 in
size and 1/2 in the clock speed compared to
ASIC. (1/3 in per-chip price)

e 1/100 initial cost



Will this be competitive?

Rule of thumb for a special-purpose computer
project:

Price-performance should be more than 100 times
better at the beginning of the project

— x 10 for 5 year development time
— x 10 for 5 year lifetime

Compared to CPU: Okay
Compared to GPU: 777

Will GPUs 10 years from now 100 times faster than
today?



Summary

e GRAPE-DR, with programmable processors, will have
wider application range than traditional GRAPEs.

e A Small cluster of GDR is now up and running
e Peak speed of a card with 4 chips is 800 Gflops (DP).

e DGEMM performance 640 Gflops,
LU decomposition > 400Gflops

e Currently, 128-card, 512-chip system is up and running

e We might return to custom design with structured ASIC



Further reading...
http://www.scidacreview.org/0902/html/hardware.html

REVIEW
Scientific Discovery through Advanced Computing

| Home | Contents | People | SciDAC Projects Contact Us

HARDWARE

Specialized Hardware for Supercomputing

What kind of computer do you imagine when you hear the terms "supercomputing” or "high-performance
computing?" A Cray XT3/4/57 An IBM BlueGene? Or a number of rack-mounted IBM/Intel/AMD servers
with Infiniband or some other fast network? Certainly, these machines do many large simulations, and
from such simulations you can easily find numerous beautiful computer graphics. However, these big
machines are not the only way to do large scientific calcdlations. The GRAPE and GRAPE-DR hardware
(figures 1 and 2), developed at the Center for Computational Astrophysics, National Astronomical
Observatory of Japan, are alternatives to typical supercomputing architecture.

Transistor Usage and Power Consumption
Accelerator hardware is one alternative to the most widely used supercomputer
architectures. The Igtest example is the IBM Roadrunner system ('Science-Based

Prediclion al LANL" SciDAC Review 4, Sunimer 2007, p33), which slarled The GRAPE and
operation in June 2008. It consists of approximately 13,000 Cell BE processors, GRAPE-DR nardware,
originally developed for the Sony PS3 game console, with double-precision developed at the

Center for

enhancement (PowerXCell 8i). Two Cell processors are mounted on a hlade, and .
Computational

two blades are connected to a dual-socket. dual-core Opteron blade throuah a



Machine code

108-bit horizontal microcode
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Interface struct

struct grape_j_particle_struct{
double xj;
double yj;
double zj;
double mj;
s
struct grape_i_particle_struct{
double x1;
double yi;
double zi;
};
struct grape_result_struct{
double fx;
double fy;
double fz;

¥



Unique feature as parallel language

e Only the inner kernel is specified

e Communication and data distribution are taken
care of by hardware and library. User-written
software does not need to care.



GRAPEs with eASIC

e Completed an experimental design of a
programmable processor for quadruple-precision
arithmetic. 6PEs in nominal 2.5Mgates.

e Started designing low-accuracy GRAPE hardware
with 7.4Mgates chip.

Summary of planned specs:
e around 8-bit relative precision
e support for quadrupole moment in hardware
e 100-200 pipelines, 300MHz, 2-4Tflops/chip

e small power consumption: single PCle card can
house 4 chips (10 Tflops, 50W in total)



Will this be competitive?

Rule of thumb for a special-purpose computer
project:

Price-performance should be more than 100 times
better at the beginning of the project

— x 10 for 5 year development time
— x 10 for 5 year lifetime

Compared to CPU: Okay
Compared to GPU: 777



