Recent development of FDPS

Jun Makino
R-CCS Particle Simulator Research Team

R-CCS Cafe Sept 6. 2021

Talk plan

1. What is FDPS?
2. Basic functions and the history of additions
3. Recent additions/improvements

4. Summary

What we want to do

e We want to try large simula-
tions.

oo O
St
e

e Computers (or the network of

computers...) are fast enough J&
to handle hundreds of mil- EE.
lions of particles, for many §

problems.

10 i
SPH; N = 10°

e In many fields, largest simu- s
lations still employ 1M or less Sl
particles....)

(example: Canup+ 2013)

Why?

Writing parallel codes which run efficiently on modern supercomputers
has become too difficult.

¢ Just to make a parallel code working is not easy

e We need to implement an efficient domain decomposition which achieves
very good load balancing and at the same time minimizes communica-
tion.

e For long-range interactions, we need to implement complex schemes
such as Particle-Mesh Ewald, FMM, TreePM, P3M or PM3.

e We need to take advantage of SIMD instructions, and keep doing so
for new versions of them (SSE, AVX, AVX2, AVX512, SVE, SVE2,) or
some other vendor-specific languages such as Cuda.

But what we can do?
Traditional ideas:
e Hope that parallelizing compilers will solve all problems.
e Hope that big shared memory machines will solve all problems.

e Hope that parallel languages (with some help of compilers) will solve
all problems.

But...

e These hopes have never been......

e Reason: low performance. Only approaches which achieve the best
performance on the most inexpensive systems have survived.

Then what can we really do?

1. Accept the reality and write MPI programs and do optimization
Limitation: If you are an ordinary person the achieved performance will
be low, and yet it will take more than infinite time to develop and de-
bug programs. Your researcher life is likely to finish before you finish
programming.

2. Let someone else do the work
Limitation: If that someone else is an ordinary person the achieved
performance will be low, and yet it will take more than infinite time and
money.

e Neither is ideal

e There are exceptions

Exceptional Products
Within Astrophysics
e pkdgrav (Quinn et al. 1997)
e Gadget (Springel et al. 2001)
e GreeM (Ishiyama et al. 2009)

Molecular Dynamics: Gromacs, LAMMPS, NAMD, Genesis,
Modylas, ...
CAE: commercial codes

Problems with exceptional products

e They are designed for their specific problems. They do not
solve your problem.

e YOU can choose:

— Solve what these programs can solve

— Do small experiments on single node (possibly with mul-
tiple GPUs)

— Devote your life to the development of good scalable
code for your problem

Not quite ideal. Major obstacle for the advance of computa-
tional science

Is there any solution?

¢ Ideally, what we want is one simulation code which can handle all pos-
sible particle-based simulations on all possible computer systems.

e This is certainly impossible. No single group can implement

— all possible problems
— all necessary integration methods
— etc etc...

One might be able to:

e Provide templates, (or DSL) using which researchers describe the prob-
lems they want to solve.

e Then the “compiler” generate the reasonably scalable and efficient code
to solve that particular problem.

To be more specific:
Particle-based simulations includes:

e Gravitational many-body simulations
e molecular-dynamics simulations
e CFD using particle methods(SPH, MPS, MLS etc)

e Meshless methods in structure analysis etc (EFGM etc)

Almost all calculation cost is spent in the evaluation of interaction be-
tween particles and their neighbors (long-range force can be done using
tree, FMM, PME etc)

Our solution

Users specify the problem by providing the definition of par-
ticle class and the particle-particle interaction function.
Our software generates functions for

e domain decomposition (with load balance)
e particle migration
e interaction calculation (and necessary communication)

that can be called from user-written programs.
Actual “generation” is done using C++ templates.
FDPS (Framework for Developping Particle Simulators)

Initial release
Iwasawa+2016 (PASJ 2016, 68, 54+arxive 1601.03138)

e Publicly available

e A single user program can be compiled to single-core, OpenMP
parallel or MPI parallel programs.

o Parallel efficiency is very high

Tutorial
FDPS Github: https://github.com/FDPS/FDPS

https://github.com/FDPS/FDPS/raw/master/doc/doc_tutorial_cpp_en.pdf
https://github.com/FDPS/FDPS

Getting FDPS and run samples

> git clone git://github.com/FDPS/FDPS.git
> cd FDPS/sample/c++/nbody

> make

> ./nbody.out

To use OpenMP and/or MPI, change a few lines of Makefile

Important points for users

e Users who know nothing about MPI can still write their pro-
grams using FDPS and compile them to highly scalable and
efficient MPI programs.

e Single source code can be used on all platforms, from sin-
gle PC to entire Fugaku (currently accelerators still need
additional care).

Performance examples

10 K O
xczo o 7
— 50% of TPP (K) ——
2 35% of TPP (XC30) -z - /@/@
S 102
[T
=
[}
(8]
c
£
510
@
o
0
10 total O
@ 10° t domain decomposition [
& o) exchange particle
2 ®
@ (0] grav = O
4] 101 [) o
IS [) o
Z ® ®
8 10° (6]
Q
£
% 10t
S =3
S] =]
= 1072 N - ..
g e
-3 :
10
102 103 10%
of cores

10°

Strong scaling with 550M
particles

Measured on both K computer
and Cray XC30 at NAOJ
Gravity only, isolated spiral
galaxy

scales up to 100k cores
30-50% of the theoretical peak
performance

Performance (and tuning) of FDPS on Sun-
way TaihuLight

measurement O O
35% of TP --w-eev o

@ 5 O
g1o
= o
ol O
e Q-
©
S
.2)
8m Q

10 10° 10*

of processes

Nearly 4PF on 1/10 of TaihuLight (Implemented many of the new algo-
rithms which will be discussed later today)

History since 2016

e 2016/1 V2.0: supper of accelerators such as GPGPU

e 2016/12 V3.0: Fortran API

e 2017/11 V4.0: Several new functions

e 2018/11 V5.0: C API

e 2020/8 6.0: addition of PIKG automatic kernel generator

e 2021/8 7.0: Support of polar/cylindrical coordinates, support of multiple
FDPS instances, improved communication algorithms

More to come (already in experimental code) : hiding communication,
support of Particle-Mesh Multipole Method.
Today we discuss some of additions in Version 5.0 and later.

C API

e FDPS is written in C++, to take advantage of its template functions. r

e Not every researchers are familiar with C++. Some uses Fortran (for
good reasons), some C, and some other languages (Julia, Rust, Crys-
tal, ...)

e We now provide C API (accepts C struct and interaction functions with
C bindings), which can be used to develop APIs in other languages.

e Fortran API was developped earlier. C API is actually more like expos-
ing the internals of Fortran API

PIKG

e What has been lacking in FDPS: Automatic way to generate high-performance
interaction kernels.

e Parallelization is taken care by FDPS, but SIMD tuning has been the
responsibility of the users.

PIKG generates high-performance kernels for a variety of architectures
(now AVX2, AVX512, SVE and Cuda) for you.

PIKG example

From FDPS sample code in sample/c++/nbody

EPI F32vec xi:pos #i-particle variable type, name, name in FDPS particle class
EPJ F32vec xj:pos #j-particle variable type, name, name in FDPS particle class
EPJ F32 mj:mass #j-particle variable type, name, name in FDPS particle class

FORCE F32vec acc:acc #name of variable in the struct to return result
FORCE F32 pot:pot #name of variable in the struct to return result

F32 eps2 #shared variable (like static member)

rij = X1 - X] #vector arithmetic operations are pre-defined

r2 = rij * rij + eps2

r_inv = rsqrt(r2) #inverse-square-root and many mathmatical functions are predefined
r2_inv = r_inv * r_inv

mr_inv = mj * r_inv

mr3_inv = r2_inv * mr_inv

acc —= mr3_inv * rij # FORCE variables are used to accumulate results

pot —-= mr_inv

For complete documentation and source, visit https://github.com/FDPS/PIKG

PIKG performance example

Performance / Gf ops

120

100

80 -

60 -

40 -

20

0

PG, AVX2

PIKG, AVX2 mmmmm
PG, AVX-512 ===

- PIKG, AVX-512 —=

64

128

256

512

1024

2048

Comparison with Phantom
GRAPE(PG) (by Dr.
Yoshikawa of Tsukuba)

AVX2 and AVX512

64-2048: Number of
particles to share the
same interaction list

Performance on Fugaku

Asymptotic single core performance of interaction kernels

Kernels # of operations asymptotic speed efficiency
Gravity(monopole) 27 35.8 Gflops 27.9 %
Hydro density/pressure 67 32.2 Gflops 25.2 %
Hydro force 80 21.6 Gflops 16.8 %
Hydro time deriv 103 27.7 Gflops 21.7 %

For comparison, the world’s fastest gravitational interaction kernel on
A64fx (K. Nitadori, 2021) https://www.slideshare.net/RCCSRENKEI/12-a2021-

249556559
63.6GF (89.5GF with 38 operations/interaction)

Our current approach is based on loop fission. Nitadori’s relies on soft-
ware pipelining and ... manual rewrite of generated assembly code.

(On Intel Xeon the performance gap is not this large)

Polar coordinates — the problem

1.0

0.8

0.6

0.4}

0.2+

0.0

[l
lIiZ

4

M1~

0.0

0.2

0.4

0.6

0.8

The Cartesian tree and
domain decomposition in
Cartesian coordinate are
not ideal for narrow rings.
For domain decomposition,
some domains can have
extremely long shape (for
example containing two
areas one with y > 0 and
the other with y < 0.

Polar coordinates — why we need it

If we can use polar (or
cylindrical) coordinates, the
shape of domains are
always good.

We need only one change in
FDPS, and several changes

0.0 0.2 0.4 0.6 0.8 1.0

x in the user code.

Polar coordinates for tree and domain de-
composition

e use cylindrical coordinates (or for wide disks, polar coordinates with
log r for radius) for domain decomposition and tree

e For tree traversal, the distance is calculated as the usual Cartesian dis-
tance, even though actual coordinates are polar, with the periodic cor-
rection for 6.

e Since what we need is the opening criterion and not the exact distance,
this scheme works fine.

e The interaction calculation is done in the original Cartesian coordi-
nates.

Change in FDPS

Introduce the following template parameter for TreeForForce class:

enum CALC_DISTANCE_TYPE{
CALC_DISTANCE_TYPE_NORMAL = 0,
CALC_DISTANCE_TYPE_NEAREST X = 1,
CALC_DISTANCE_TYPE_NEAREST_Y = 2,
CALC_DISTANCE_TYPE_NEAREST_XY = 3,
CALC_DISTANCE_TYPE_NEAREST_Z = 4,
CALC_DISTANCE_TYPE_NEAREST_XZ = 5,
CALC_DISTANCE_TYPE_NEAREST_YZ = 6,
CALC_DISTANCE_TYPE_NEAREST_XYZ = 7,

s

(Not sure why we need this in addition to enum BOUNDARY_CONDITION...)

Change in the user code

e FullParticle should contain positions in two coordinates. Polar one
should be used for getPos.

e MomentMonopole, MomentQuadrupole, SPJMonopole and SPJQuadrupole
classes need to be replaced with the user-defined ones with two posi-
tions in two coordinates.

e positions in polar coordinates should be updated before domain de-
composition and tree updates.

e For collision detection, care should be taken on which distance is used
when. (treewalk and force calculation uses different distances)

Example (particle class)

(will soon appear in https://github.com/jmakino/nbody-with-center. A dif-
ferent version will be in sample/c++/planetary-ring)
class FPGrav{

public:
PS:
PS:
PS:
PS:
PS:

PS:

+

:F64vec getPos() const {

return pos;

+

const

:S64 id; void ctod()

:F64 mass; {

:F64vec pos; const auto

:F64vec pos_car; const auto

:F64vec vel; const auto
const auto

auto

cth = cos(pos.x);
sth = sin(pos.x);
r = pos.y;

pos_xX = r*cth,;
pos_y = r*sth,

pos_car= PS::F64vec(pos_x, pos_y,

(Probably the use of pos and pos_polar would be better...)

Example (main part of user code)

PS::DomainInfo dinfo;

dinfo.setBoundaryCondition(PS: :BOUNDARY_CONDITION_OPEN) ;
dinfo.setPosRootDomainX(-MY_PI, MY_PI);

using Tree_t = PS::TreeForForce<PS::SEARCH_MODE_LONG_SCATTER, FPGrav, FPGrav,
FPGrav, MyMomentMonopole, MyMomentMonopole,
MySPJMonopole, PS::CALC_DISTANCE_TYPE_NEAREST_X>;

Tree_t tree_grav;
tree_grav.calcForceAllAndWriteBack(CalcForceEp<FPGrav>,
CalcGravitySp<MySPJMonopole>, system_grav, dinfo);

Moment classes and interaction calculation functions should also be changed.

LET communication method

e MPLALLTOALLYV has been used for the exchange of the “local essential
tree” (the information of the tree of sender domain necessary in the
receiver domain)

e MPI_ALLTOALLV can be very time-consuming for large number pf MPI
processes

e Added other ways of LET exchange.

Use PS: :TreeForForce: :setExchagneLETMode to select.

MPI communicator

e Can set MPI communicators for domain, particlesystem and tree classes.

e Can have multiple systems in one MPI run.

Up to this function is in FDPS 7.0

hiding communication

e Split interaction calculation to internal and external contributions.

e External contribution is much less expensive than internal contribution,
at least when the number of particles is large.

e Do all communications for external interaction calculation while per-
forming internal calculation

e Quite important on Fugaku

Particle-Mesh Multipole Method(1)

“The best from the Two Worlds”
Basic idea (Nitadori 2014)

e Stop making high-level nodes for FMM at certain level and apply (con-
ceptually) O(IN?) calculation at that level.

e Using the fact that this O(/N?) operation can be regarded as convo-
lution of multipole expansions and Green’s functions, apply FFT and
reduce calculation cost to O(/N log N)

Particle-Mesh Multipole Method(2)

\\
\\
N
//
A1/

Conceptually, local expansion L of cell 7,5 can be
obtained as convolution of multipole expansion of
other cells and Green’s function

Li; =) MGk,
Kl

This can be done using FFT

Advantage of PM? and current status
Advantages:

e Over PME: Higher accuracy with less calculation cost (existing draw-
back same as that of FMM, though)

e Over FMM: natural periodic boundary, elimination of steps with low par-
allel efficiency. Open boundary might be possible with Vico-Greengard-
Ferrando method.

Current status:

Implemented on experimental code for Fugaku. Will be available on the next
update.

Summary

e We have been improving FDPS, and hopefully will be doing so even
after our team in R-CCS disappear.

e New features: Automatic interaction kernel generation for AVX(s), SVE
and Cuda, Many optimizations for Fugaku

e Things to come: communication hiding, PM° etc.

