
A (somewhat) faster tree traversal algorithm for finding
neighbors

J. Makino
Internal Seminar, March 10, 2021



Overview
• Tree traversal

• Performance of tree traversal on various CPUs

• A somewhat faster scheme

• Measurement result



Tree traversal

box-particle condition box-box condition



Tree traversal for short-range interactions
The condition for “well-separated” is different from that for long-
range interactions.

• Long-range: Opening angle

• Short-range: overlap (extended box which covers all neighbor
spheres for particles in that box)



Performance of tree traversal on various CPUs
code: https://github.com/jmakino/C-tree (nbtest)
./nbtest -i hom1M.stoa -N 128 -n 128 -t 0.03
(hom1M.stoa made with NEMO mkhomsph)

CPU time(s)
Core i7-1065G7 (HP note) 0.3126
Skylake 0.4885
Threadripper 0.2674
FX700/g++ 1.869
FX700/FCC(clang) 0.816
FX700/FCC(trad) 2.576
HP apollo70(g++) 0.8435



Caveats
• All measurements are on single core

• x86 clocks are thus at their highest (2.5?, 3.4, 4.2GHz for Sky-
lake, Core i7 and Threadripper)

• FX700 and Apollo70 clocks are fixed at 2.0 and 2.2GHz



Per-core performance of FX700
• In this test, the average length of the list is 218, and the number

of lists is 30250 (shared by around 33 particles). So the speed
to make list is 10M particles/sec.

• theoretical peak performance is (for single prec) 128Gflops. Even
with 25% of the peak, we can still perform around 100M interac-
tions/sec (if number of FP ops/interaction is around 300).

• List construction does take significant fraction of the total time



A somewhat faster scheme

• Usual scheme: do
treewalk for each box

• “New” algorithm: omit
distant nodes at
higher level
Theoretically
O(logN) → O(1)



Practical considerations
• We need to implement “double recursive” algorithm. When to

go down the tree of which side? (source or destination)

One possible algorithm (not necessarily the best)

function dual_walk(src, dest)

if (src and dest are not overlapped) return

if (dest has more than nglimit particles)

if (src has less than nllimit particles) or (src is smaller than dest)

go down for dest

else

go down for src

else

if (src has less than nlimit particles)

check and add particles in src to nblist of dest

else

go down for src



Code for decision making
int src_down = 0; int dest_down = 0;

if(!are_overlapped_with_cutoff(this,&source_node, cutoff)){

return;

}

if(nparticle > ncrit){

if (source_node.is_leaf()|source_node.nparticle < nplimit){

dest_down = 1;

}else{

if (srclevel < destlevel){

src_down = 1;

}else{

dest_down = 1;

}

}

}else{

if ((!source_node.is_leaf() &&(source_node.nparticle < nplimit ))

&&(this != &source_node)) src_down = 1;

}



Measured Performance
CPU original(s) new
Core i7-1065G7 (HP note) 0.3126 0.2339
Skylake 0.4885 0.3336
Threadripper 0.2674 0.2068
FX700/g++ 1.869 1.225
FX700/FCC(clang) 0.816 0.6889
FX700/FCC(trad) 2.576 2.117
HP apollo70(g++) 0.8435 0.5740



Results
• 15-35% reduction in time

• Unfortunately, the improvement is the smallest on FX700(clang)...

• On FX700, the main bottleneck is the judgment for individual
particles. Need to accelerate this part.



Summary
• Tried to improve the performance of tree traversal for neighbor

list

• Implemented dual-walk algorithm.

• Improvement from original algorithm: 15-35% reduction in time.
Unfortunately smallest on FX700(clang)

• For this treewalk, FX700 compiler in trad mode generates the
code 3X slower than that in clang mode.

• Compared to x86 architecture, clock-normalized performance of
A64fx for this tree walk is around 60% (with Clang mode).


