To SIMD or not to SIMD, or how to
SIMD?

Jun Makino
RIKEN Advanced Institute for Computational Science

Exascale Computing Project
Co-Design Team

Overview

e Problems with “wide SIMD” execution units of
modern microprocessors

e Particle-Particle interaction
e SIMD in the outermost loop.

e Performance

e Summary

Problems with “wide SIMD”
execution units

e What is a (wide) SIMD unit in modern micropro-
cessors?

e Why is it problematic?

What is a (wide) SIMD unit in
modern microprocessors?

Examples:

e 512-bit SIMD on KNC
e 256-bit SIMD (AVX2?) on Haswell

e 256-bit HPC-ACE2 on Fujitsu SPARC64 XIfx

How it works:

e Basic idea is quite simple: each “word” of data
registers contain four (256-bit) or eight (512-bit)
DP floating-point numbers, or twice of that of SP
numbers.

e multiple FPUs operate in parallel on multiple DP
or SP words in a single register — high peak FP
performance.

Sounds simple? Well... I

Why is it problematic?

Simply because a naive implementation of a wide SIMD

architecture and instruction set would be almost im-
possible to use.

From the point of view of a hardware designer, a sim-
ple (and thus natural) SIMD architecture would be

able to do only

e “aligned” memory access
e element-wise SIMD add/sub/mult

and nothing else.

What “simple” SIMD units
cannot do

e unaligned memory access a[i] = b[i]+b[i+1];
e stride memory access al[i] = b[i*3];

e indirect memory access alil = blindex[il];

e permutation within registers

e horizontal addition
(necessary for summation sum += af[i];)

e conditional execution (store)

All of them could be done with reasonable efficiency
on vector machines of 80-90s.

Comparison of vector arch and
SIMD arch
Vector SIMD

Aligned access OK OK
Conditional OK OK
Unaligned access OK can do
Stride access OK slow
Indirect access OK very slow
Permutation no need can do
Horizontal easy hard

Most of operations introduced as “Lessons learned
from Cray-1” are either slow, very slow, or difficult
to implement.

By the way, why are they slow
and /or difficult?

Why are things that used to be easy on vector ma-
chines so hard on modern microprocessors?

e Short answer: Difference in the memory architec-
ture

e A bit longer answer:

— Main memory units of vector machines had multi-
bank structure (collection of many slow mem-
ory chips). There was no cache memory.

— Stride/indirect access logic can be implemented
with small additional hardware cost.

— Modern microprocessors access memory through
hierarchy of cache memory, with line size of 16-

64 bytes.

— Stride/indirect access means most of data in
one cache line is discarded.

So?

e Something is deeeeply wrong with the modern use
of SIMD units.

e Unfortunately, some people have to live with them.

e In the following, I give some example solutions, for
particle-based simulations.

Interaction evaluation with modern
SIMD units

e Traditional approach and its limitation
e Proposed approach

e Performance example

Traditional approach

Traditional way to use SIMD units for interaction cal-
culation (Phantom GRAPE)

e Start from a double-loop structure (inner i and
outer j loop)

e i loop for particles which receive force, j loop for
particles which exert force

e unroll i loop to apply SIMD instructions

e also unroll j loop to achieve best performance if
necessary

Limitations
e Unrolling i loop needs efficient register broadcast

e Unrolling j loop needs (fairly) efficient horizontal
addition

e It is practically impossible to make use of Newton’s
third law

e What is the best approach depends very strongly
on the details of specific architectures and available
instructions. No general solution available.

Proposed approach
e Apply the SIMD operation at one level higher

— Multiple interaction lists for treecode (multi-
walk algorithm)

— Multiple cell-cell interactions for short-range in-
teractions

e Advantages

— Application of SIMD operation to innermost
loop (multiwalk or cell-cell level) becomes triv-
ial. Most compilers can do reasonable work.

— Perfect use of Newton’s third law.
e Potential disadvantages
— Data rearrangement overhead

— Loop size imbalance
— Increased L1 access

Performance example

For illustrative purpose only...

e Mimicking cell-cell interactions. Each cell contains
20 particles

e Original data structure: AoS (not strictly...). Each
cell has its array of particles

e Calculate gravitational interaction

e Repeat calculation of 64 cell-cell interactions (25600
interactions) 10,000 times. 256M interactions.

Measurement done on g8host00 (Suzukake-dai. Xeon
E5-2650V2 2.6GHz), gcc 4.4.7

Compiler flag for vectorization: -ftree-vectorize -03
-mavx —-ffast-math -fassociative-math
-ftree-vectorizer-verbose=2

Result

Timing done just with “time” command....

Code execution time (sec)
Full vectorized 0.83
Not vectorized 3.12
No data rearrangement 2.36

e Factor 2.8 speedup over Non-SIMD code is not
bad.

e However, actual speed is about 0.31G interactions/sec.
Low-accuracy Phantom GRAPE(Tanikawa et al.
2013) can do 2G interactions/sec. on a 3.4GHz
Core 17 with AVX.

Why a factor of six difference?
e Clock speed: 3.4GHz vs 2.6GHz

e Use of Newton’s 3rd law: 7 more operations/interaction

e Compiler used full-accuracy (SP) square root and
division...

These combined gives difference of factor 3 or around.

How the innermost loop looks like

for(is=0;is<NCELL;is++){
REAL dx, dy, dz;
REAL r2inv, r3inv, mir3inv, mjr3inv,;
dx=xi[i] [0] [is]-xj[j][0] [is];
dy=xi[i] [1] [is]-xj[j] [1][is];
dz=xi[i] [2] [is]-xj[j][2] [is];
r2inv = 1.0f/(dx*dx+dy*dy+dz*dz) ;
r3inv = r2inv*sqrtf(r2inv);
mir3inv= r3inv*mil[i] [is];
mjr3inv= r3inv*mj[j] [is];

ail[i] [0] [is] -= dx*mir3inv;
aili] [1] [is] -= dy*mir3inv;
aili] [2] [is] -= dz*mir3inv;

ajljl[0] [is] += dx*mjr3inv;
ajl[jl[1] [is] += dy*mjr3inv;
ajljl[2] [is] += dz*mjr3inv;

Some details...
With gcc 4.8.2,

rinv = 1.0f/sqrtf (dx*xdx+dy*dy+dz*dz) ;
r31nv = rinvrinvrinv,

iIs MUCH FASTER then

r2inv = 1.0f/(dx*dx+dy*dy+dz*dz) ;
r3inv = r2inv*sqrtf (r2inv) ;

but not with gcc 4.4.7... With 4.8.2, the above code re-
sulted asm code which uses vrcpps and vrsqrtps (why?7)
(Thanks to KNN)

Generated assembly code

.L16:
vmovaps (%rsi,’%rax), Y%xmm2
movq 229432 (%rbp), %rl0
vmovaps (hr12,%rax), Yxmml
vsubps 0(%r13,%rax), %xmm2, %xmm2
vmovaps (%ri11,%rax), %xmmO
vsubps (%ri15,%rax), %xmml, %xmml
VImovaps (%rbx,’%rax), %xmm7
vsubps (%r10,%rax), %xmmO, %xmmO
movq -229496 (%rbp), %r10
vmulps %xmm2, %xmm2, %xmm3
vmulps %xmml, %xmml, %xmmé
vaddps %xmm3, %xmm4, %xmm3
vmulps %xmmO, %xmmO, %xmméd
vaddps %xmm4, Y%xmm3, %xmm3
vdivps %xmm3, %xmm5, %xmm3

vsqrtps hxmm3, %xmmé

vmulps
vmulps
vmulps
vmulps
vmulps
vsubps
vmovaps
vmulps
vmulps
vmovaps
vmulps
vsubps
vmulps
vmovaps
vmovaps
vsubps
vmovaps
vaddps
vmovaps

Jxmm4 ,

%xmm3, %xmm3

(%r10,%rax), %xmm3,
(%r14,%rax), %xmm3,

%xmm?2 ,
%xmm?2,
%xmm6 ,
%xmm6 ,
%xmm1
%xmmO,
(Y%rcx,
Jxmm1 ,
%xmmé ,
%xmmO ,
%xmm6 ,
(%rdx,
Jxmm4 ,
%oxmm4

%xmm4, %xmm6
%xmm3, %xmm2
%xmm7, %xmm6

(%rbx,hrax)
%oxmmé4 , %xmmé
%oxmm4 , %xmmé
%hrax), Yxmm7
%xmm3, %xmml
%xmm7, %xmmo6
%xmm3, %xmmO

(%hrex,frax)
%hrax), 7%xmm6
%xmm6, Y%xmmé

(%rdx, %hrax)

%xmmé
%xmm3

(%r9,%rax), %xmm2, %xmm2

%xmm?2 ,

(%r9,%rax)

vaddps (%r8,%rax), %xmml, %xmml

VIovaps Y%xmml, (%r8,%rax)

vaddps (%rdi,%rax), %xmmO, %xmmO
VIovaps %xmmO, (%rdi,%rax)

addq $16, Y%rax

cmpq $256, Yrax

jne .L16

Operation counts

e Very reasonable asm
code

e The biggest loss of

Operation counts performance from the
SP sub 6 use sqrt+division (can
SP add 5 be avoided with gcc 4.8).
SP mul 12

SP div 1 e 14 memory loads and 6
SP sqrt 1 memory stores. Can be

reduced to 7 loads and 3
stores...

Summary

e SIMD units on modern microprocessors are very
hard to use.

e One possible way to make an efficient use of them is
to rearrange data and loop structure so that only

simple (and thus efficient) instructions appear in
the innermost loop

e For particle interaction calculation, this can be achieved
by applying SIMD on multiwalk (or multi cell-cell)
level.

e Achieved performance with gcc automatic vector-
ization is acceptable, but to achieve really good

performance we need a way to let compiler gener-
ate low-precision VRSQRTPS...

