
GRAPE and GRAPE-DR

Jun Makino
Center for Computational Astrophysics

and
Division Theoretical Astronomy

National Astronomical Observatory of Japan

GPU-SMP 2010 July 27-29, 2010, Harbin, China

Summary

• GRAPEs, special-purpose computer for gravitational
N -body system, have been providing 10x - 100x more
computational power compared to general-purpose
supercompuers.

• GRAPE-DR, with programmable processors, has wider
application range than traditional GRAPEs.

• Peak speed of a GRAPE-DR card with 4 chips is 800
Gflops (DP).

• DGEMM performance 640 Gflops,
LU decomposition > 400Gflops

• Achieved the best performance per W (Top 1 in the Little
Green 500 list, 815Mflops/W)

• Accelerators require new algorithms, not just porting and
tuning

Talk structure

• Short history of GRAPE

• GRAPE-DR

– Architecture

– Comparison with other architecture

– Application tuning/performance examples

• Summary

• (Next-generation GRAPE)

Short history of GRAPE

• Basic concept

• GRAPE-1 through 6

• Software Perspective

Basic concept (As of 1988)

• With N -body simulation, almost all calculation goes to the
calculation of particle-particle interaction.

• This is true even for schemes like Barnes-Hut treecode or
FMM.

• A simple hardware which calculates the particle-particle
interaction can accelerate overall calculation.

• Original Idea: Chikada (1988)

Host
Computer

GRAPE

Time integration etc. Interaction calculation

Chikada’s idea (1988)

• Hardwired pipeline for force calculation (similar to Delft
DMDP)

• Hybrid Architecture (things other than force calculation
done elsewhere)

GRAPE-1 to GRAPE-6

GRAPE-1: 1989, 308Mflops

GRAPE-4: 1995, 1.08Tflops

GRAPE-6: 2002, 64Tflops

Performance history

Since 1995

(GRAPE-4),

GRAPE has been

faster than

general-purpose

computers.

Development cost

was around 1/100.

Science on GRAPEs

• Pure N -body

– Planetary formation (Kokubo, Ida, ...)

– Star clusters (JM, Baumgardt, Portegies

Zwart, Hurley, ...)

– Galactic Dynamics (Athanassoula, Fujii, ...)

– Galaxies with central BH (JM, Iwasawa, ...)

– Cosmology (Fukushige, Yoshikawa)

• SPH

– Galaxy Formation (Steinmetz, Susa, Saitoh)

– Star formation (Klessen)

“Problem” with GRAPE approach

• Chip development cost has become too high.

Year Machine Chip initial cost process

1992 GRAPE-4 200K$ 1µm

1997 GRAPE-6 1M$ 250nm

2004 GRAPE-DR 4M$ 90nm

2010? GDR2? > 10M$ 45nm?

Initial cost should be 1/4 or less of the total budget.

How we can continue?

Current Generation— GRAPE-DR

• New architecture — wider application range than

previous GRAPEs

• primarily to get funded

• No force pipeline. SIMD programmable processor

• “Parallel evolution” with GPUs.

• Developent: FY 2004-2008

Processor architecture

GP Reg
 32W

Local Mem
 256W

T Reg

+

x

M
ultiplexor

M
ultiplexor

INT
ALU

SHMEM
Port

SHMEM
Port

A

B

Mask(M)Reg

PEID
BBID

• DP Float Mult

• DP Float add/sub

• Integer ALU

• 32-word registers

• 256-word memory

• communication

port

Chip architecture

B
roadcast M

em
ory

Broadcast
same data to
all PEs

Control Processor

(in FPGA chip)

Memory Write Packet
Instruction

Broadcast Block 0

Result output port

External MemoryHost Computer

SING Chip

Result

Result Reduction and Output
Network

any processor
can write (one
at a time

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

• 32 PEs organized to
“broadcast block” (BB)

• BB has shared memory.

• Input data is broadcasted
to all BBs.

• Outputs from BBs go
through reduction
network (sum etc)

Computation Model

Parallel evaluation of

Ri =
∑
j

f(xi, yj)

• parallel over both i and j

• yj may be omitted (trivial parallelism)

• Si,j =
∑
k

f(xi,k, yk,j) also possible

(matrix multiplication)

The Chip

Sample chip delivered May 2006

90nm TSMC, Worst case 65W@500MHz

PE Layout

Black: Local Memory

Red: Reg. File

Orange: FMUL

Green: FADD

Blue: IALU

0.7mm by 0.7mm

800K transistors

0.13W@500MHz

1Gflops/512Mflops

peak (SP/DP)

Processor board

PCIe x16 (Gen 1) interface

Altera Arria GX as DRAM

controller/communication

interface

• Around 200W power

consumption

• Not quite running at

500MHz yet...

(FPGA design not

optimized yet)

• 819Gflops DP peak

(400MHz clock)

• Available from K&F

Computing Research

(www.kfcr.jp)

GRAPE-DR cluster system

GRAPE-DR cluster system

• 128-node, 128-card system (105TF theoretical

peak @ 400MHz)

• Linpack measured: 360 Gflops/node

• Gravity code: 340Gflops/chip

• Host computer: Intel Core i7+X58 chipset, 12GB

memory (some are 18GB nodes)

• network: x4 DDR Infiniband

• plan to expand to 384-node system.

Software Environment

• Assembly Language

• Kernel libraries

– matrix multiplication

∗ BLAS, LAPACK

– Particle-Particle interaction

• Compiler Language

• OpenMP-like interface

Idea based on PGDL (Hamada, Nakasato)

— pipeline generator for FPGA

Compiler language example

Nakasato (2008), based on LLVM.

VARI xi, yi, zi;
VARJ xj, yj, zj, mj;
VARF fx, fy, fz;
dx=xi-xj;
dy=yi-yj;
dz=zi-zj;
r2= dx*dx+dy*dy+dz*dz;
rinv = rsqrt(r2);
mr3inv = rinv*rinv*rinv*mj;
fx+= mr3inv*dx;
fy+= mr3inv*dy;
fz+= mr3inv*dz;

Translated to assembly language and API calls.

Achieves near-peak performance, without further

tuning. (also available for NVIDIA and AMD GPUs)

Driver functions

Generated from the description in the previous slide

int SING_send_j_particle(struct grape_j_particle_struct *jp,
int index_in_EM);

int SING_send_i_particle(struct grape_i_particle_struct *ip,
int n);

int SING_get_result(struct grape_result_struct *rp);
void SING_grape_init();
int SING_grape_run(int n);

OpenMP-like compiler

Goose compiler (Kawai 2009)

#pragma goose parallel for icnt(i) jcnt(j) res (a[i][0..2])

for (i = 0; i < ni; i++) {

for (j = 0; j < nj; j++) {

double r2 = eps2[i];

for (k = 0; k < 3; k++) dx[k] = x[j][k] - x[i][k];

for (k = 0; k < 3; k++) r2 += dx[k]*dx[k];

rinv = rsqrt(r2);

mf = m[j]*rinv*rinv*rinv;

for (k = 0; k < 3; k++) a[i][k] += mf * dx[k];

}

}

Generates code for single- and double-loops
(Translates to Nakasato’s language)

Performance and Tuning example

• HPL (LU-decomposition)

• Gravity

Matrix-multiplication performance

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700
 750
 800
 850
 900

 0 5000 10000 15000 20000 25000 30000 35000

S
pe

ed
 [G

Fl
op

s]

Matrix size M=N

overlap
nooverlap

peak

M=N, K=2048, 640 Gflops

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 0 5000 10000 15000 20000 25000 30000 35000

S
pe

ed
 [G

Fl
op

s]
Matrix size M

overlap
nooverlap

peak

N=K=2048, 450 Gflops

FASTEST single-card performance on the planet.

(Fermi: 3-400Gflops?)

LU-decomposition tuning

• Almost every previously known techniques

– Use large block (NB=2048)

– right-looking form

– TRSM converted to GEMM

• Several other “new” techniques (our new code)

– Use row-major order to make row swapping fast

– Transpose matrix during recursive column
decomposition to make pivot search and narrow band
matrix operation fast

– Use recursive scheme for TRSM (calculation of L−1)

LU-decomposition performance

 50

 100

 150

 200

 250

 300

 350

 400

 450

 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000

P
er

fo
rm

an
ce

 [G
flo

ps
]

Matrix size

lu
HPL

P
er

fo
rm

an
ce

 (G
flo

ps
)

 5K 25K 50K
 Matrix Size

400

250

100

New code

HPL

Speed in Gflops as
function of Matrix size
Top: new code
Bottom: HPL 1.04a
430 Gflops (54% of
theoretical peak) for
N=50K

HPL (parallel LU)

• Everything done for single-node LU-decomposition

• Both column- and row-wise communication hidden

• TRSM further modified: calculate UT −1 instead of T −1U

• More or less working, still lots of room for tuning

N=240K, 64 nodes: 24Tflops/29KW

x2 performance compared to HPL 1.04a

815Mflops/W: #1 in Little Green500 list

Dependence on Matrix size

Measurement on 64-node,
48-Tflops system
Matrix size limited by
main memory size of host
(18GB)
Efficiency limited by
matrix size...

Dark side of tuning...

• X58 DMA performance seems to be limited to

6.4GB/s (sum of upstream and downstream,

theoretical limit is 19.2GB/s)

• It starts to drop data silently when busy.

– PIO write

– DMA write

Workaround we used:

• Do not use PIOW

• Do not use DMA read and write concurrently

Gravity kernel performance

(Performance of individual timestep code not much

different)

 10

 100

 1000

 1000 10000 100000 1e+06

S
pe

ed
 [G

Fl
op

s]

N

Assembly code (which I wrote) is not very optimized

yet... Should reach at least 600 Gflops after rewrite.

Similarity and Difference with GPUs

GRAPE-DR GPU (Fermi)

SIMD Yes Yes

Accelerator Yes Yes

Design rule 90nm 40nm

FPUs 512 448

Memory bandwidth ∼ 5GB/s > 100GB/s

transistors 400M 3G

Peak DP performance 200GF 515 Gflops

Power consumption 50W 250W

Performance per watt 4.0GF/W 2.1GF/W

Similarity and Difference with GPUs

• Both GRAPE-DR and GPUs achieved very high

performance (and performance per watt) by

going to SIMD many-core architecture

• The design of GRAPE-DR is much more

extreme, with 1/10 transistors per FPU.

• Part of the reason of this difference is the limited

memory bandwidth.

• Reduction in transistor count resulted in high

performance/W.

GPGPU performance for N -body
simulation

• x10 compared to a good SSE code for an N2 code

with shared timestep.

• ∼ x5 for production-level algorithms.

• ∼ x3 or less for the same price (if you buy

GTX295, not Tesla).

• < x2 if you are not using Keigo Nitadori’s code.

• If you buy Tesla, no chance.

Keigo Nitadori(discussing the use of GPU)

Note: N-body simulations on
GRAPE and GPGPUs

• Clusters of GPU-equipped PCs have achieved

impressive performance on cosmological N -body

simulations (Hamada et al 2009).

• This high performance is achieved by using the

algorithm developed for parallel GRAPE systems

(JM 2004, Ishiyama et al 2009).

• For accelerator architectures, the key to the high

performance is new algorithms for things not

done on the accelerator side.

“Porting” applications to
accelerators

• You cannot get high performance by just

“moving most expensive part to accelerators”

• Parameter tunings (such as the change of the

block size etc) are not enough

• You need to develop new algorithms to reduce

the calculation cost of the part not done on the

accelerators

• In many cases, you can do this, because not much

effort has been paid before

Quotes
From: Twelve Ways to Fool the Masses When Giving
Performance Results on ==Accelerators Parallel Computers
(D. H. Bailey, 1991)

1. Quote only 32-bit performance results, not 64-bit results.
2. Present performance figures for an inner kernel, and then
represent these figures as the performance of the entire
application.
6. Compare your results against =============x87 scalar, unoptimized code
on ======================Xeons Crays.
7. When direct run time comparisons are required, compare
with an old code on an obsolete system.
8. If MFLOPS rates must be quoted, base the operation count
on the parallel implementation, not on the best sequential
implementation.
12. If all else fails, show pretty pictures and animated videos,
and don’t talk about performance.

History repeats itself — Karl Marx

Summary

• GRAPEs, special-purpose computer for gravitational
N -body system, have been providing 10x - 100x more
computational power compared to general-purpose
supercompuers.

• GRAPE-DR, with programmable processors, has wider
application range than traditional GRAPEs.

• Peak speed of a GRAPE-DR card with 4 chips is 800
Gflops (DP).

• DGEMM performance 640 Gflops,
LU decomposition > 400Gflops

• Achieved the best performance per W (Top 1 in the Little
Green 500 list, 815Mflops/W)

• Accelerators require new algorithms, not just porting and
tuning

Next-Generation GRAPE

Question:

Any reason to continue hardware development?

• GPUs are fast, and getting faster

• FPGAs are also growing in size and speed

• Custom ASICs practically impossible to make

Next-Generation GRAPE

Question:

Any reason to continue hardware development?

• GPUs are fast, and getting faster

• FPGAs are also growing in size and speed

• Custom ASICs practically impossible to make

Answer?

• GPU speed improvement might have slowed down

• FPGAs are becoming far too expensive

• Power consumption might become most critical

• Somewhat cheaper way to make custom chips

GPU speed improvement slowing
down?

Clear “slowing down”

after 2006 (after G80)

Reason: shift to more
general-purpose
architecture

Discrete GPU market is
eaten up by unified
chipsets and unified
CPU+GPU

But: HPC market is not
large enough to support
complex chip development

FPGA

“Field Programmable Gate Array”

• “Programmable” hardware

• “Future of computing” for the last two decades....

• Telecommunication market needs: large and fast

chips (very expensive)

Power Consumption

1kW · 1 year ∼ 1000 USD

You (or your institute) might be paying more money

for electricity than for hardware.

Special-purpose hardware is quite energy efficient.

Chip Design rule Gflops/W

GRAPE-7(FPGA) 65nm > 20

GRAPE-DR 90nm 4

GRAPE-6 250nm 1.5

Tesla C2050 40nm < 2

Opteron 6128 45nm < 1.2

Structured ASIC

• Something between FPGA and ASIC

• eASIC: 90nm (Fujitsu) and 45nm (Chartered)

products.

• Compared to FPGA:

– 3x size

– 1/10 chip unit price

– non-zero initial cost

• Compared to ASIC:

– 1/10 size and 1/2 clock speed

– 1/3 chip unit price

– 1/100 initial cost (> 10M USD vs ∼ 100K)

GRAPEs with eASIC

• Completed an experimental design of a

programmable processor for quadruple-precision

arithmetic. 6PEs in nominal 2.5Mgates.

• Started designing low-accuracy GRAPE hardware

with 7.4Mgates chip.

Summary of planned specs:

• around 8-bit relative precision

• 100-200 pipelines, 300-400 MHz, 2-5Tflops/chip

• small power consumption: single PCIe card can

house 4 chips (10 Tflops, 50W in total)

Will this be competitive?

Rule of thumb for a special-purpose computer

project:

Price-performance goal should be more than 100

times better than that of a PC available when you

start the project.

— x 10 for 5 year development time

— x 10 for 5 year lifetime

Compared to CPU: Okay

Compared to GPU: ??? (Okay for electricity)

Will this be competitive?

Rule of thumb for a special-purpose computer

project:

Price-performance goal should be more than 100

times better than that of a PC available when you

start the project.

— x 10 for 5 year development time

— x 10 for 5 year lifetime

Compared to CPU: Okay

Compared to GPU: ??? (Okay for electricity)

Will GPUs exist 10 years from now?

