
What can/should we measure with
benchmarks?

Jun Makino
Department of Planetology, Kobe University

FS2020 Project, RIKEN-CCS

SC18 BoF 107 Pros and Cons of HPCx benchmarks Nov 13



Overview
• Last 40 years of HPC benchmarks

• Why HPL survived? (Or why everybody else has
not?)

• Is HPL good enough? (Clearly not...)

• So what should be measured and how?



Last 40 years of HPC benchmarks

• 1979: Original LINPACK benchmark

• 1989 PERFECT Club

• 1990 SLALOM

• 1991 HPL (Parallel LINPACK)

• 1991 NAS Parallel Benchmark

• 1993 Top 500

• 1996 SPEC HPC

• 2005 HPCC

• 2013 HPCG

• 2014 HPGMG



1991: NAS Parallel Benchmark
Quote from Baily (2005?):
At the time (1991), the only widely available high-end bench-
mark was the scalable Linpack benchmark, which while it
was useful and remains useful to this day, was not considered
typical of most applications on NASA’s supercomputers or
at most other sites. One possible solution was to employ an
actual large-scale application code, such as one of those being
used by scientists using supercomputers at the NAS center.

In 2018, we are still talking about limitations of HPL and its
possible replacement. Why?



Why HPL survived?
(Or why everybody else has not?)
In my opinion, HPL actually has unique features not shared by
other benchmarks

• Only the problem to be solved is specified. Neither the source
code nor even algorithms (Gustavson’s recursive blocking
was invented in 1997, after the start of Top 500)

• Problem size is not specified. Machines from kflops to yottaflops
can be measured.

• One condition: the FP operation count for a given problem
size must be fixed (no Strassen-Winograd or any other algo-
rithms)



Why HPL survived? (continued)

• Requirement for communication is modest and can be re-
duced by increasing the main meory size

• Requirement for main memory BF is also can be reduced by
increasing the cache size

• Only the DGEMM kernel should be optimized (at least on
usual multicore machines... For accelerators with extreme
performance ratios, many other things matter — see JM et
al. Procedia Computer Science 4 2011 888-897)

In short, HPL has survived because it can adopt its require-
ment (and algorithms and source code) to the change of ar-
chitectures over several decades



Then is HPL good enough?
Clearly not — that’s why there have been so many proposals for
alternatives.

But what can we do? We now know

• HPL does not represent application performance

• Fixed set of applications (or mini-applications) do not survive
(PERFECT, SPEC HPC, ...)

• Fixed set of codes for basic algorithms do not survive (NPB,
HPCC, ...)



So what can we do?
What we are doing now:

a) Define “representative” applications to measure the perfor-
mance of a machine (in particular new one to be built)

b) Use HPL — certainly “not enough”

c) Use HPL + HPCx

d) Something else



Problems with “representative” appli-
cations

• We know they would not survive (PERFECT, SPEC HPC,
...)

• They tend to be negative against new architectures (or any-
thing new)

– They are optimized to yesterdey’s architecture, not to
tomorrow’s architecture.

– They do not support emerging programming model

– They do not use the latest algorithms



Problems with HPL + HPCx

• HPL measures the peak floating-point performance (call this
f) and whether or not the rest of the system fills the mini-
mum requirement of HPL (tradeoffs between cache and mem-
ory BW and between memory size and network BW)

• HPx measures something else (call this x)

• From the hardware point of view, for most types of x, trying
to make x/f large results in the decrease of energy efficiency.

• The “optimal” value of x/f varies not just for different prob-
lems, but for a single problem depending on algorithms and
implementations, and many researchers are trying to reduce
necessary values of x/f .

The efforts to keep the x/f number high has negative im-
pact on energy efficiency and tends to discourage the effort
to improve algorithms

(Of course, DP-only HPL has its problem)



Problems with HPL + HPCx (2)

• The actual performance bottleneck of real application codes
can come from many different points (or combinations of
them) in the case of today’s complex processors with wide
SIMD units and multiple levels of cache shared by many
cores. HPL (and HPCx in general) are too simple. Exam-
ples include: the number of architectural and physical regis-
ters, latencies and bandwidths in all levels of on-chip storage,
the performance of random or stride access at all levels, the
amount of available OOO resources.

• Our experience on K and Post-K suggests that the efficiency
of many “real” applications are limited by neither the peak
floating-point performance(HPL) nor the main memory band-
width(HPCG) but something else.



My points:

1. Benchmarks (or a set of them) should show how the hardware
should be designed, not just for a single machine at one time,
but for a reasonably long period.

2. HPL shows how we can design a long-lived benchmark.

3. In principle, other HPCx benchmarks can be designed to
achieve similar long lifetimes.

4. However, on modern multicore processors with deep mem-
ory hierarchy, the efficiencies of many applications are not
limited by what are measured by HPCx benchmarks.

5. We probably need new ways to define “application bench-
marks” to allow larger rooms for optimization (define prob-
lems, not source code or algorithms)



Or are there better ways?


