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Talk structure

• Short history of GRAPE

– GRAPE machines

• GRAPE-DR

– Architecture

– Comparison with other architecture

– Development status

• Next-Generation GRAPE

• GRAPEs and Star-formation simulations



Summary

• GRAPE-DR, with programmable processors, has wider
application range than traditional GRAPEs.

• Peak speed of a card with 4 chips is 800 Gflops (DP).

• DGEMM performance 640 Gflops,
LU decomposition > 400Gflops

• Currently, 128-card, 512-chip system is up and running.

• We return to custom design with structured ASIC for the
next generation (budget limitation...)

• GRAPE-DR might be useful for star formation simulation.



Short history of GRAPE

• Basic concept

• GRAPE-1 through 6

• Software Perspective



Basic concept (As of 1988)

• With N -body simulation, almost all calculation goes to the
calculation of particle-particle interaction.

• This is true even for schemes like Barnes-Hut treecode or
FMM.

• A simple hardware which calculates the particle-particle
interaction can accelerate overall calculation.

• Original Idea: Chikada (1988)

Host
Computer

GRAPE

Time integration etc. Interaction calculation



Chikada’s idea (1988)

• Hardwired pipeline for force calculation (similar to Delft
DMDP)

• Hybrid Architecture (things other than force calculation
done elsewhere)



GRAPE-1 to GRAPE-6

GRAPE-1: 1989, 308Mflops

GRAPE-4: 1995, 1.08Tflops

GRAPE-6: 2002, 64Tflops



Performance history

Since 1995

(GRAPE-4),

GRAPE has been

faster than

general-purpose

computers.

Development cost

was around 1/100.



Science on GRAPEs

• Pure N -body

– Planetary formation (Kokubo, Ida, ...)

– Star clusters (JM, Baumgardt, Portegies

Zwart, Hurley, ...)

– Galactic Dynamics (Athanassoula, Fujii, ...)

– Galaxies with central BH (JM, Iwasawa,...)

– Cosmology (Fukushige, Yoshikawa)

• SPH

– Galaxy Formation (Steinmetz, Susa, Saitoh)

– Star formation (Klessen)



Advantage of GRAPEs

• Planetary formation, Star clusters: N2 with

individual timestep

– GRAPE very efficient

– Difficult to use large parallel machine

• Galactic Dynamics, Cosmology: Treecode

– GRAPE okay

– large parallel machines work fine

• Galaxy Formation, Star formation: SPH

– GRAPE does gravity only

– Difficult to use large parallel machine

efficiently?



“Problem” with GRAPE approach

• Chip development cost has become too high.

Year Machine Chip initial cost process

1992 GRAPE-4 200K$ 1µm

1997 GRAPE-6 1M$ 250nm

2004 GRAPE-DR 4M$ 90nm

2010? GDR2? > 10M$ 45nm?

Initial cost should be 1/4 or less of the total budget.

How we can continue?



Next-Generation GRAPE
— GRAPE-DR

• New architecture — wider application range than

previous GRAPEs

• primarily to get funded

• No force pipeline. SIMD programmable processor



Processor architecture
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Chip architecture
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• 32 PEs organized to
“broadcast block” (BB)

• BB has shared memory.
Various reduction
operation can be applied
to the output from BBs
using reduction tree.

• Input data is broadcasted
to all BBs.



Computation Model

Parallel evaluation of

Ri =
∑
j

f(xi, yj)

• parallel over both i and j

• yj may be omitted (trivial parallelism)

• Si,j =
∑
k

f(xi,k, yk,j) also possible

(matrix multiplication)



The Chip

Sample chip delivered May 2006

90nm TSMC, Worst case 65W@500MHz



PE Layout

Black: Local Memory

Red: Reg. File

Orange: FMUL

Green: FADD

Blue: IALU

0.7mm by 0.7mm

800K transistors

0.13W@500MHz

1Gflops/512Mflops

peak (SP/DP)



Processor board

PCIe x16 (Gen 1) interface

Altera Arria GX as DRAM

controller/communication

interface

• Around 200W power

consumption

• Not quite running at

500MHz yet...

(FPGA design not

optimized yet)

• 900Gflops DP peak

(450MHz clock)

• Available from K&F

Computing Research

(www.kfcr.jp)



GRAPE-DR cluster system



GRAPE-DR cluster system

Sorry, this is MareNostrum



GRAPE-DR cluster system



GRAPE-DR cluster system

• 128-node, 128-card system (105TF theoretical

peak @ 400MHz)

• Linpack measured: 360 Gflops/node

• Gravity code: 340Gflops/chip

• Host computer: Intel Core i7+X58 chipset, 12GB

memory

• network: x4 DDR Infiniband

• plan to expand to 384-node system.



Software Environment

• Assembly Language

• Kernel libraries

– matrix multiplication

∗ BLAS, LAPACK

– Particle-Particle interaction

• Compiler Language

• OpenMP-like interface

Idea based on PGDL (Hamada, Nakasato)

— pipeline generator for FPGA



Compiler language example

Nakasato (2008), based on LLVM.

VARI xi, yi, zi;
VARJ xj, yj, zj, mj;
VARF fx, fy, fz;
dx=xi-xj;
dy=yi-yj;
dz=zi-zj;
r2= dx*dx+dy*dy+dz*dz;
rinv = rsqrt(r2);
mr3inv = rinv*rinv*rinv*mj;
fx+= mr3inv*dx;
fy+= mr3inv*dy;
fz+= mr3inv*dz;



Driver functions

Generated from the description in the previous slide

int SING_send_j_particle(struct grape_j_particle_struct *jp,
int index_in_EM);

int SING_send_i_particle(struct grape_i_particle_struct *ip,
int n);

int SING_get_result(struct grape_result_struct *rp);
void SING_grape_init();
int SING_grape_run(int n);



OpenMP-like compiler

Goose compiler (Kawai 2009)

#pragma goose parallel for icnt(i) jcnt(j) res (a[i][0..2])

for (i = 0; i < ni; i++) {

for (j = 0; j < nj; j++) {

double r2 = eps2[i];

for (k = 0; k < 3; k++) dx[k] = x[j][k] - x[i][k];

for (k = 0; k < 3; k++) r2 += dx[k]*dx[k];

rinv = rsqrt(r2);

mf = m[j]*rinv*rinv*rinv;

for (k = 0; k < 3; k++) a[i][k] += mf * dx[k];

}

}

Translated to assembly language and API calls.



Performance and Tuning example

• HPL (LU-decomposition)

• Gravity

Based on the work by H. Koike (Thesis work)



Matrix-multiplication performance
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the planet!



LU-decomposition performance
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LU-decomposition tuning

• Almost every previously known techniques

– except for the concurrent use of CPU and GDR (we use
GDR for column factorization as well...)

– right-looking form

– TRSM converted to GEMM

• Several other “new” techniques

– use row-major order for fast O(N2) operations

– Transpose matrix during recursive column
decomposition

– Use recursive scheme for TRSM (calculation of L−1)



HPL (parallel LU)

• Everything done for single-node LU-decomposition

• Both column- and row-wise communication hidden

• TRSM further modified: calculate UT −1 instead of T −1U

• More or less working, tuning still necessary

N=240K, 64 nodes: 23Tflops/25KW(est.)

920Mflops/W: Better than #1 in Green500 by 25%.



Gravity kernel performance

(Performance of individual timestep code not much

different)
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Comparison with GPGPU
Pros:

• Significantly better silicon usage: 512PEs with 90nm
40% of the peak DP speed of Tesla C2050 with 1/3 clock
and 1/8 transistors

factor 2 better performance per watt

• Designed for scientific applications
reduction, small communication overhead, etc

Cons:

• Higher cost per silicon area...
(small production quantity)

• Longer product cycle... 5 years vs 1-2 years

Good implementations of N -body code on GPGPU are there
(Hamada, Nitadori, ...)



GPGPU performance for N -body
simulation

• x10 compared to a good SSE code for a N2 code

with shared timestep.

• ∼ x5 for production-level algorithms.

• ∼ x3 or less for the same price (if you buy

GTX295, not Tesla).

• < x2 if you are not using Keigo Nitadori’s code.



Keigo Nitadori(discussing the use of GPU)



Next-Generation GRAPE

Question:

Any reason to continue hardware development?

• GPUs are fast, and getting faster

• FPGAs are also growing in size and speed

• Custom ASICs practically impossible to make



Next-Generation GRAPE

Question:

Any reason to continue hardware development?

• GPUs are fast, and getting faster

• FPGAs are also growing in size and speed

• Custom ASICs practically impossible to make

Answer?

• GPU speed improvement might have slowed down

• FPGAs are becoming far too expensive

• Power consumption might become most critical

• Somewhat cheaper way to make custom chips



GPU speed improvement slowing
down?

Clear “slowing down”

after 2006 (after G80)

Reason: shift to more
general-purpose
architecture

Discrete GPU market is
eaten up by unified
chipsets and unified
CPU+GPU

But: HPC market is not
large enough to support
complex chip development



FPGA

“Field Programmable Gate Array”

• “Programmable” hardware

• “Future of computing” for the last two decades....

• Telecommunication market needs: large and fast

chips (very expensive)



Power Consumption

1kW · 1 year ∼ 1000 USD

You (or your institute) might be paying more money

for electricity than for hardware.

Special-purpose hardware is quite energy efficient.

Chip Design rule Gflops/W

GRAPE-7(FPGA) 65nm > 20

GRAPE-DR 90nm 4

GRAPE-6 250nm 1.5

Tesla C2050 40nm < 2

Opteron 6128 45nm < 1.2



Structured ASIC

• Something between FPGA and ASIC

• eASIC: 90nm (Fujitsu) and 45nm (Chartered)

products.

• Compared to FPGA:

– 3x size

– 1/10 chip unit price

– non-zero initial cost

• Compared to ASIC:

– 1/10 size and 1/2 clock speed

– 1/3 chip unit price

– 1/100 initial cost (> 10M USD vs ∼ 100K)



GRAPEs with eASIC

• Completed an experimental design of a

programmable processor for quadruple-precision

arithmetic. 6PEs in nominal 2.5Mgates.

• Started designing low-accuracy GRAPE hardware

with 7.4Mgates chip.

Summary of planned specs:

• around 8-bit relative precision

• 100-200 pipelines, 300-400 MHz, 2-5Tflops/chip

• small power consumption: single PCIe card can

house 4 chips (10 Tflops, 50W in total)



Will this be competitive?

Rule of thumb for a special-purpose computer

project:

Price-performance goal should be more than 100

times better than that of a PC available when you

start the project.

— x 10 for 5 year development time

— x 10 for 5 year lifetime

Compared to CPU: Okay

Compared to GPU: ??? (Okay for electricity)



Will this be competitive?

Rule of thumb for a special-purpose computer

project:

Price-performance goal should be more than 100

times better than that of a PC available when you

start the project.

— x 10 for 5 year development time

— x 10 for 5 year lifetime

Compared to CPU: Okay

Compared to GPU: ??? (Okay for electricity)

Will GPUs exist 10 years from now?



GRAPEs and Star-formation
simulations

SPH simulation with GRAPE

• Early efforts — Steinmetz, Klessen, Susa

– Let GRAPE do gravity

– SPH and all other physics on host

– Speedup rather limited: Gravity is dominant,

but not something like 99.99%...

• Possibility with GRAPE-DR

– Do SPH interaction (and other physics) on

GRAPE-DR (and GPU and other

accelerators)



Practical problems with SPH on
accelerators

• Neighbor list

– neighbor lists of different particles are all

different

– Hopeless with an SIMD architecture with

hundreds of cores...

• Individual timestep

– Only a small fraction of particles are

integrated with small timesteps

– reduce the total calculation cost, but reduces

parallelism...



Neighbor list

• *If* the accelerator is fast enough, we can use a

shared neighbor list to reduce the communication

cost.

• Same technique as that we use with treecode

(Barnes 89, JM 90).

• roughly 10x more computation to reduce

communication by a factor of 10.



Individual timestep

• Wadsley et al. (2004): Particles with relatively

small timesteps dominate the cost.

(But: If you resolve high-density gas, there

appear small number of particles with very short

timestep)

• With sink particles, there is an artificial lower

limit for the timestep.

Traditional individual timestep might be an overkill.

Something much simpler might be enough.



Summary

• GRAPE-DR, with programmable processors, has wider
application range than traditional GRAPEs.

• Peak speed of a card with 4 chips is 800 Gflops (DP).

• DGEMM performance 640 Gflops,
LU decomposition > 400Gflops

• Currently, 128-card, 512-chip system is up and running.

• We return to custom design with structured ASIC for the
next generation (budget limitation...)

• GRAPE-DR might be useful for star formation simulation.


