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ABSTRACT
We present cross sections and reaction rates for merging to occur during encounters of equal-mass

spherical galaxies. As an application, we determine the rate of galaxy merging in clusters of galaxies. We
present results for two types of Plummer models (a full and a truncated one), two King models, and the
Hernquist model. Cross sections are determined on the basis of a large number (D500) of simulations of
galaxy encounters, using the 10 GigaÑops GRAPE-3A special purpose computer. We characterize the
overall merger rate of galaxies in a galaxy cluster by a single number, derived from our cross sections by
an integration over galaxy encounter velocities in the limit of a constant density in velocity space. For
small clusters, where the cluster velocity dispersion may not signiÐcantly exceed the internal velocity dis-
persion of the individual galaxies, this constant-density approximation may not be valid. For those cases,
we present separate results, based on integrations of our cross sections over Maxwellian velocity dis-
tributions. Finally, tidal e†ects from the cluster potential, as well as from neighboring galaxies, may
prevent a barely bound galaxy pair from spiraling in after their Ðrst encounter. We give a quantitative
estimate of the resulting reduction in the actual merger rate that is due to these tidal interactions.
Subject headings : galaxies : clusters : general È galaxies : interactions È methods : numerical

1. INTRODUCTION

Detailed simulations of galaxy encounters have become
increasingly sophisticated during the last 25 years, as a
result of signiÐcant improvement both in computer hard-
ware and in algorithms used (for a recent review, see Barnes
& Hernquist Most of these simulations attempt to1992).
explain features of speciÐc encounters, often in an attempt
to reproduce particular observations of interacting galaxies
or merger remnants. In contrast, encounters between
simpler galaxy models in order to obtain more general sta-
tistical results have received less attention.

The present paper attempts to address this latter problem
by limiting ourselves to simulations of equal-mass galaxy
models of various types, in order to determine merger cross
sections and reaction rates. Our results can be readily
applied to study the evolution of galaxy clusters, if we use
our models to represent dark matter halos around galaxies
in the limit that these halos can be considered to be spher-
ical. In practice, moderate deviations from halo sphericity
will not greatly a†ect our results.

The merger probability in an encounter of two galaxies is
enhanced signiÐcantly when the encounter takes place at
relatively low speed. For a given cluster of galaxies, with a
given population of speciÐed galaxy halos, the net merger
rate can be determined by an integration of the usual npv
factor (density] cross section ] velocity) over a Maxwel-
lian or lowered Maxwellian velocity distribution. This pro-
cedure is sketched qualitatively in and can beFigure 1b
compared to that used in stellar evolution calculations (Fig.

where nuclear reaction rates are determined from the1a)
encounters of individual nuclei in the cores of stars. In the
latter case, cross sections rise quickly with increasing
encounter speed, leaving a small window for e†ective
encounters well into the high-energy tail of the Maxwellian
distribution. Our case of galaxy mergers, in contrast, is

dependent on low-speed encounters and is determined by a
relatively small window at the low-energy end of the Max-
wellian distribution.

suggests that we can make a good start byFigure 1b
representing the velocity distribution of the galaxies in the
cluster as having a constant density in velocity space, i.e.,
f (v) P v2 in three dimensions. This constant density can be
obtained, for any given Maxwellian distribution, as the
density of galaxies around the peak of the folded merger
occurrence fpv in In we describe some techni-Figure 1b. ° 2
cal details of our calculations. In we present the cross° 3
sections, from which we determine reaction rates in In° 4.

we determine the corrections to the reaction rates that° 5,
are due to tidal e†ects. As an application, we present the
rate of galaxy merging in clusters of galaxies in and we° 6,
compare that with results from previous papers. Section 7
summarizes our results.

2. SIMULATIONS

2.1. Units
We choose our physical units of mass, length, and time by

requiring that where M is the mass of aM \ r
v
\ G\ 1,

single galaxy, is the virial radius of a galaxy, and G is ther
vgravitational constant & Mathieu The virial(Heggie 1986).

radius is a measure of the size of a galaxy, deÐned so as to be
able to express the potential energy of the galaxy to be
equal to

Epot \ [GM2
2r

v
. (1)

In practice, the virial radius is not very di†erent from the
half-mass radius Typically,r

h
.

r
h
^ 0.8r

v
, (2)
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FIG. 1a FIG. 1b

FIG. 1.È(a) Nuclear reaction rates in the core of a star, as the product of cross section p and the rate factor vf (v), with v denoting the relative velocities of
the nuclei and f (v) their Maxwellian distribution. (b) Merger rates in a rich cluster of galaxies, similar to the stellar evolution case.

with a coefficient generally in the range 0.76È0.98 (Spitzer
° 1.2a). In our standard case of a Plummer model we1987,

have

r
h
\ 3n

16J22@3[ 1
r
v
\ 0.77r

v
, (3)

for the Hernquist model

r
h
\ (1 ] J2)

3
r
v
, (4)

and for a constant-density sphere

r
h
\ 3 ] 22@3

5
r
v
\ 0.95r

v
. (5)

The main reason to take the virial radius, rather than the
more usual half-mass radius, as our choice of units is a
physical one : when we vary the internal structure of our
galaxies, it is more meaningful to keep the total energy E of
a galaxy constant than its half-mass radius. In our units,

E\ Epot/2 \ [14 . (6)

In terms of the particle positions, the virial radius is the
harmonic mean particle separation

r
v
\
T 1

r
i
[ r

j

U~1
, (7)

averaged over all particle pairs i D j.
2.2. Galaxy Models and Initial Conditions

For the initial spherical galaxy model, we adopted Ðve
di†erent choices : two Plummer models with di†erent cuto†
radii (22.8 and 4), two King models with di†erent valuesr

cfor the central potential (1 and 7), and a HernquistW
c

model with We will indicate the(Hernquist 1990) r
c
\ 20.

Plummer model with by ““ truncated Plummer ÏÏ andr
c
\ 4

the Plummer model with simply by ““ Plummer.ÏÏr
c
\ 22.8

These models provide a wide range of central conden-
sation and halo distribution. They all have an isotropic
velocity distribution since, according to & WhiteAguilar

the di†erence in the velocity distribution is less(1985),
important in determining merger cross sections than the
di†erence in the density distribution. For all calculations,
initial galaxies are modeled by 2048 equal-mass particles
(except for several test calculations ; see Thus the total° 3.4).
number of particles per run is 4096. For Plummer models
and King models, we constructed random realizations using
an algorithm similar to the one described in Aarseth,
He� non, & Wielen For Hernquist models, we(1974).
adopted a kind of ““ quiet start,ÏÏ in which particle i is ini-
tially placed in an arbitrary position on a sphere with a
radius corresponding to the Lagrangian mass (i [ 0.5)/N.
The velocity of each particle was then chosen randomly
from the velocity distribution function at that radius.

Since the initial galaxy models are spherical, the relative
orbit of the two given galaxies is determined by only two
parameters specifying the incoming branch of the hyper-
bolic Kepler orbit, the impact parameter o, and the relative
velocity at inÐnity v. In this study, we found it more conve-
nient to specify the initial orbit by v and the pericenter
distance of the extrapolated unperturbed hyperbolicr

porbit, in the limit that two galaxies would have been point
masses. The reason to use rather than o is related to ther

pmeasurements of energy change during relatively wide
encounters : keeping constant allows us to let v smoothlyr

pgo to zero in the parabolic limit, where o ] O.
shows the initial conditions used to determineFigure 2

the merging criterion for each models. The number of runs
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FIG. 2.ÈFor each value of the pericenter distance circles indicate ther
p
,

choice of asymptotic velocities v for which a galaxy encounter has been
carried out. Through linear interpolation of the energy dissipation, the
critical velocity for producing parabolic outgoing orbits is found forv(r

p
)

each value. The full line connecting these points indicates the border ofr
pthe region within which merger takes place.

for one model is 60È140. The following values for werer
pused : 0, 0.0125, 0.05, 0.2, 0.4, 0.6, 0.8, 1.2, 1.4, 1.6, 1.8, 2.0, 2.4,

2.8, 3.2, 3.6, 4.0, 4.8, 5.6, 6.4, and 8.0. For the initial separa-
tion between the two approaching galaxies, we choose a
value of roughly where is the half-mass10 max (r

p
, 2r

h
), r

hradius of each of the two identical galaxies.

2.3. Hardware and Numerical Integration Method
We have used a GRAPE-3A et al. a(Okumura 1993),

special purpose computer for collisionless N-body simula-
tion, for all simulations. The GRAPE-3A performs the cal-
culation of the gravitational interaction between particles.
It is used with a host computer which is a UNIX-based
workstation. All calculations except for the force calcu-
lation are performed on the host computer. One GRAPE-
3A board hosts eight custom LSI chips, each of which
calculates the gravitational interaction between particles in
the speed of about 0.75 GÑops. Thus the peak speed of one
board is 6 GÑops. For most runs, we have used two
GRAPE-3A boards in parallel.

For the force calculation, we have used a simple direct-
summation algorithm. Although it is perfectly possible to
use the O(N log N) tree algorithm on the GRAPE systems

it is not practical to do so for small particle(Makino 1991),
numbers. The minimum number of particles for which the
tree code is faster than the direct summation algorithm is
1È4 ] 104, depending on the speed of the host computer.
Since we typically used only 4096 particles, direct summa-
tion was much faster than the tree code.

We used the time-centered leap-frog integrator. The time
step was 1/128 for all runs. The size of the softening param-
eter was v\ 1/32. These parameters gave sufficient accu-
racy, resulting in a relative energy error well below 0.1% at
the end of each calculation.

2.4. Simulation Termination Procedure and Data Reduction
For each choice of galaxy model and for each choice of

pericenter distance we have carried out a series of galaxyr
p
,

encounter simulations at di†erent values for the encounter
velocity v (measured at inÐnity). For each of these simula-
tions, we determine the energy of the relative orbit of the
two galaxies, well after the Ðrst encounter, using the simple
energy criterion :

E\ [GM1M2
r

] 1
2

kv2 , (8)

where and are the masses of two galaxies, r is theM1 M2distance between two galaxies, G is the gravitational con-
stant, and is the reduced mass, v isk \M1M2/(M1] M2)the relative velocity.

In we plot the energy E(t) as a function of time t,Figure 3,
for the case of Hernquist model initial conditions, with r

p
\

0.0125 and v\ 1.2. It is clear that the asymptotic value of
the energy is reached soon after the encounter. However, to
be on the safe side, we have extended all runs to reach a Ðnal
separation comparable to the initial separation, where pos-
sible (for a bound Ðnal state, we have taken the minimum of
this separation and the apocenter of the elliptic orbit). In
this particular example, it takes far more time to reach the
initial separation again because the outgoing orbit has far
less positive energy and therefore the galaxies recede more
slowly than they came in.

Having determined the asymptotic energy values v),E(r
p
,

we select the pair of v-values between which the energy
changes sign. We then use linear interpolation to determine
the critical point at which the outgoing orbit wouldr

p
(v)

have been just parabolic, separating the regions of merging
and escape. indicates this process, for the case ofFigure 2
Plummer models. Each circle represents a galaxy encounter
run, and the full line connects the critical points.r

p
(v)

shows the same results, but translated fromFigure 4 r
pvalues to o values. The impact parameter o is related to the

pericenter distance through the gravitational focusingr
prelation (see eq. 14 below).

As a technical note, here is a brief description of the
actual implementation of the energy determination,

FIG. 3.ÈTotal energy E(t) of the two galaxies after the Ðrst encounter,
as a function of time t, as speciÐed in The initial lowering of the totaleq. (7).
energy is caused by the fact that the tidal interaction terms have been
neglected in the calculation of the potential.
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FIG. 4a FIG. 4b

FIG. 4.ÈMaximum impact parameter for which merging takes place, as a function of velocity at inÐnity v, for Plummer model initial conditions. (b)ocrit(v)An enlargement of (a), for small impact parameter values.

in which appear the mass, position, and veloc-equation (8),
ity of the galaxies after the encounter. They are calculated
by the following procedure :

1. We make a crude guess for the center of mass of each
galaxy. Here we use the center of mass of particles that are
initially in one galaxy as the guess for the center of mass of
the galaxy at that time.

2. For each particle, we determine to which galaxy it
belongs. We calculate estimated binding energy given by

E
ij
\ [ GM

j
(r
ij
2 ]R02)1@2

] 1
2

v
ij
2 , (9)

where is the distance between particle i and the estimatedr
ijcenter of mass of the galaxy j, is the relative velocityv

ijbetween them, and is the length-scale parameter thatR0represents the depth of the potential well of galaxies. We use
which gives a fairly accurate estimate for theR0\ 0.6,

potential for Plummer models. We then make our initial
guess as to which galaxy particle i mostly likely might be
bound by assigning it to galaxy 1 if or to galaxy 2E

i1 \E
i2if E

i1 [E
i2.3. For each galaxy, we determine which of the particles

that are labeled as belonging to it are actually bound to the
galaxy. If the binding energy of a particle relative to the
galaxy is positive, we regard it as an unbounded escaper.

4. We repeat step (3) until membership converges.

Most of the data reduction was performed using the
NEMO software package, in the version provided by
Teuben (1995).

3. CROSS SECTIONS FOR GALAXY MERGING

3.1. Results and Scaling Relations
shows the critical velocity for merging as aFigure 5 vcritfunction of the impact parameter o for all galaxy models

used. The merging criterion determined experimentally here
shows only a weak dependence on the galaxy model : for the
whole range of impact parameters studied, the di†erence in

among the di†erent models is less than 20%. For thevcritPlummer model, we Ðnd a good Ðt with forvcritP o~0.75
large o, as plotted for comparison in For the KingFigure 5.
model with the index is slightly larger and forW

c
\ 1 W

c
\

7 the index is slightly smaller. The slope for the Hernquist
model is somewhat smaller still.

At Ðrst sight, these results seem to be in good agreement
with the distant tidal impulsive approximation, which
indeed predicts a relationship for large o. ThevcritP o~0.75
tidal impulsive approximation has been used by many
researchers to obtain analytic approximations for changes

FIG. 5.ÈMaximum velocity for which merger takes place. Thevcrit(o)
impact parameter o and are both asymptotic values, in the limit ofvcritinÐnite initial galaxy separation. Solid, short-dashed, long-dashed, shortÈ
dot-dashed and longÈdot-dashed curves are results for Plummer (rcut \23), King King Plummer and Hernquist(W

c
\ 1), (W

c
\ 7), (rcut \ 4),

models, respectively.
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in mass and energy of galaxies involved in relatively weak
encounters Lecar, &(Richstone 1975 ; White 1979 ; Dekel,
Shaham & Malumuth In this1980 ; Richstone 1983).
approximation, the loss of energy of the relative orbital
motion of the two galaxies scales as

*EP
AGM
r
p
2 v

p

B2
, (10)

where and are the relative distance and relative veloc-r
p

v
pity at closest approach. For the critical velocity, the energy

loss is equal to the kinetic energy of the orbital motion at
inÐnity,

*E\ 12 kv2 , (11)

where k \ M/2 is the reduced mass. If we apply the point
mass approximation for the relative orbit, the relations
between the orbital elements are given by conservation of
angular momentum and energy as

ov\ r
p
v
p

,

1
2

kv2\ 1
2

kv
p
2[ GM2

r
p

. (12)

Here we assume that Under this assump-kv2 >GM2/r
p
.

tion, the last equality is reduced to

v
p
\
S4GM

r
p

. (13)

The resulting pericenter distance is then given as

r
p
\ o2v2

4GM
, (14)

and the incoming velocity can now be expressed in terms of
the impact parameter as

vP o~3@4 , (15)

seemingly in good agreement with the data shown in
Figure 6.

3.2. T he Masking Tendency of Gravitational Focusing
This good agreement is, however, fortuitous and does not

reÑect the physical reality. The discrepancies can be seen
clearly in which shows the critical velocity as aFigure 6, v

mfunction of pericenter distance If the tidal approximationr
p
.

were really valid, the results for all models would show the
same asymptotic behavior of The results for thevP r

p
~3@2.

Plummer models and the concentrated King model is close
to the theoretical line. However, the results for the Hern-
quist model and the shallow King model deviate signiÐ-
cantly.

Indeed, there was no reason to expect an impulsive tidal
approximation to give us guidance in estimating the critical
velocity for mergers to take place. As is clear from Figure 6,
mergers at large take place for nearly parabolic orbits,r

pwhere the duration of relatively close encounters around
pericenter passage is drawn out to a total time exceeding
that of the half-mass crossing time. There is no reason to
expect, under these circumstances, that any type of impul-
sive approximation would be valid.

Why, then, did show such a good correspon-Figure 5
dence with the line The reason can be foundvcritP o~0.75?
in a conspiracy of gravitational focusing e†ects together
with the real merger criterion. This can be seen as follows.

FIG. 6.ÈAs but with the merger velocity now plottedFig. 5, vcrit(rp)against the pericenter distance The tidally impulsive limit, the liner
p
.

is given here for comparison.vcrit P r
p
~3@2,

Suppose that we start with a relation for the energy loss
in the form of a power law

*EP r
p
~a . (16)

For the critical velocity at inÐnity, we then have

vP r
p
~a@2 . (17)

From we obtainequation (14),

vP o~a@(a`1) . (18)

The slope of this relation between o and v lies in the
rangeM[1, 0N, for any positive value of a. This implies that
even large di†erences in the relations between nearest
approach and energy loss are not very well visible in
Figure 5.

From a practical point of view, this reasoning has an
interesting consequence : implies that theequation (18)
merging cross section is relatively insensitive to the fact that
the amount of energy loss varies widely among di†erent
models when measured at the same pericenter distance.

From a theoretical point of view, we already saw that the
impulsive tidal approximation is not reasonable. More spe-
ciÐcally, the timescale of the encounter is proportional to

If this encounter timescale signiÐcantly exceeds ther
p
1.5.

orbital timescale of a particle in the galaxy, the binding
energy of that particle becomes an adiabatic invariant. As a
result, the energy change decays exponentially as a function
of increasing If a galaxy has a Ðnite radius r, encountersr

p
.

with will result in only a very small energy change,r
p
? r

and would thus decrease exponentially.v(r
p
)

3.3. T heoretical Scaling Arguments
A simple alternative to the impulsive approach could

start with a determination of the amount of signiÐcant par-
ticle overlap during the encounter. A quick inspection of
Figures and already shows that this may be a reasonable5 6
approach, when we realize the exceptional nature of the
Hernquist & King models. These are the two(W

c
\ 1)

models that deviate most in both Ðgures, and, indeed, these
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are the two models that deviate most in the position of the
radius that encloses 95% of the mass in each model, with
the King model having an unusually sharp cuto†(W

c
\ 1)

and the Hernquist model having an unusually large amount
of matter far from the core region (see also Fig. 12).

If a galaxy has an extended halo with a power-law density
proÐle, the particles in the region outside the radius haver

porbital timescales comparable to, or longer than, the time-
scale of the encounter. As a result, those particles are
strongly perturbed, and we can still expect the impulsive
approximation to give a reasonable estimate, at least in
order of magnitude. Thus the energy gain of particles
outside the radius can be estimated from the typicalr

pvelocity kick *v they receive as

*Eout B [M [ M(r
p
)](*v)2

\ [M [ M(r
p
)]
A2GM

r
p
v
p

B2
, (19)

where M(r) is the mass of a single galaxy enclosed inside the
radius r (the total mass M \ 1 initially, in our units). The
velocity at pericenter passage is related to in the para-v

p
r
pbolic approximation by This gives12vp2 B GM/r

p
.

*EoutB
G[M [ M(r

p
)]M

r
p

. (20)

Note that this energy change is equal to the binding energy
of the mass outside the radius In other words, in ourr

p
.

approximation all particles are divided into two groups, an
inner and an outer group. The inner particles are considered
to be left undisturbed, while the outer ones are signiÐcantly
perturbed during the encounter.

For galaxy models with a halo described by a power-law
density we have [M [ M(r)]P r~b`3 ando

d
\ r~b,

*Eout P r
p
2~b , vP r

p
1~b@2 . (21)

For the Hernquist model, b \ 4. Therefore the power index
in the latter relation is [1. For the Plummer model, b \ 5,
and the index becomes [3/2.

shows the critical velocity obtained by N-bodyFigure 7
simulations and that estimated using Forequation (20).
both Plummer and Hernquist models, the theoretical esti-
mate and the numerical result show a reasonable agree-
ment, well within a factor of 2 for values in the ranger

pM1, 20N. This is a very satisfactory result, given the simple
nature of our approximations.

3.4. Cross Sections
From the results, plotted in Figures and it iso

m
(v) 4 5,

straightforward to determine the cross section p(v) for
mergers to occur :

p(v)\ no2 . (22)

The results are plotted in Figure 8.
A more useful way to display these cross sections is by

multiplying them by a factor v3. The Ðrst two factors of v
reÑect the three-dimensional nature of a Maxwellian veloc-
ity distribution, with a velocity space volume factor of v2 dv
(see while the third factor indicates the fact that,eq. [29]),
for a Ðxed target size, the rate of merging encounters is
proportional to the relative velocity of the galaxies
involved.

The results, in the form of v3p(v), are plotted in Figure 9.
There is a slight gap at the left-hand side of the curves,
where it would have been too time-consuming to determine
the critical merger velocities through numerical simula-
tions. Fortunately, we can use the arguments developed in

to extrapolate our numerical results leftward of where° 3.3
the curves end. For galaxy models with a halo described by
a power-law density we Ðnd from equationso

d
\ r~b, (14)

and that(21)

o P v(b~1)@(2~b) . (23)

This leads directly to

pv3P o2v3P v(b~4)@(b~2) . (24)

For a Hernquist model, with b \ 4, we see that this quan-
tity tends to a constant value for vanishing v, while for a

FIG. 7a FIG. 7b

FIG. 7.ÈSame as but including the theoretical estimate for large (a) Experimental results for a Plummer model, together with the theoreticalFig. 6, r
p
.

estimate (b) Similar results for a Hernquist model, together with the theoretical estimatevcrit P r
p
~3@2. vcrit P r

p
~1.



No. 1, 1997 MERGER RATE OF EQUAL-MASS SPHERICAL GALAXIES 89

FIG. 8.ÈMerging cross section p(v), where v is the initial encounter
velocity (at inÐnity). The various lines have the same meaning as those in
Fig. 5.

Plummer model this quantity tends to scale as v1@3 for low v
values. In the rate determinations of we will use these° 4,
analytic extrapolations to augment the numerical data.

3.5. Error Discussion
In our simulations, the total number of particles per

galaxy has been typically N \ 2 ] 103. Depending on the
exact deÐnition of half-mass relaxation time and half-thrmass crossing time we can get somewhat di†erentthc,relationships between these two quantities. Let us take as a
reasonably accurate choice the expression thr/thc \
0.1N/ ln (0.4N) (see for the factor 0.4). ForSpitzer 1987
N \ 2 ] 103, this gives us However, we havethr/thc^ 30.
used a softening length of 1/32. With a strong-deÑection
distance of order 1/N, the added softening increases the
relaxation time by a factor log N/log 32 ^ 2. Our galaxies
can thus be expected to show signiÐcant relaxation after 60
half-mass crossing times. In our units, the internal three-
dimensional velocity dispersion of a galaxy is 1/21@2, and the
time to cross the system, starting at the half-mass radius, is
therefore D2/21@2 ^ 3. Thus, we can expect signiÐcant
relaxation to occur after D200 time units.

For the simulation in relaxation e†ects are notFigure 3,
expected to be very important, given a total duration of the
simulation of 100 time units. However, for larger impact
parameters, the duration of a typical encounter simulation
can be signiÐcantly longer, and relaxation e†ects may begin
to inÑuence the measurements of energy dissipation. This in
turn will e†ect the determination of the border line for
mergers to take place at high values for the impact param-
eter.

We have run various tests in order to determine the sys-
tematic errors that can occur for large values. Forr

pexample, for the King models with we have rerun aW
c
\ 1,

number of experiments, using a total particle number per
galaxy in the range 512 ¹ N ¹ 16384, as compared to our
standard value N \ 2048. For relatively small pericenter
values, such as and we did not Ðnd anyr

p
\ 0.1 r

p
\ 3.2,

noticeable change for the Ðnal merger boundary value

FIG. 9.ÈThe di†erential merging rate v3p(v) plotted as a function of the
velocity v for Ðve di†erent galaxy models. The curves have the same mean-
ings as in Fig. 5.

In fact, even downgrading our runs by a factor of 4 inv
m
(r
p
).

total particle number did not have a signiÐcant e†ect on the
outcome.

However, for we found that the measuredr
p
\ 6.4, v

m
(r
p
)

steadily decreased for increasing particle numbers, until lev-
eling o† for a value of N that is 4 times larger than orig-
inally used. As a consequence, the reduction in slope in the
lower right corner in the line labeled ““ King ÏÏ in(W

c
\ 1)

is not correct. In the limit of N ] O, the line willFigure 6
continue to descend with a near-constant slope, leading to

values around that are roughly half of what wev
m

r
p
\ 8

have obtained here for our standard value of N \ 2048
particles per galaxy. However, these systematic errors do
not contribute signiÐcantly to the overall reaction rates, as
we can see in Figure 9.

4. MERGER RATES

Given the cross section determined in the previous
section, we are now in a position to determine the rate at
which mergers occur, by averaging over a distribution of
velocities.

The distribution function for the velocity of the galaxies
inside a cluster is given in a Maxwellian approximation by

f1(v) \
A2
n
B1@2

p
e
~3v2e~v2@2pe2 , (25)

where is the one-dimensional velocity dispersion for thep
ecluster.

The distribution of encounter velocities is then given by

f2(v) \ 2~1n~1@2p
e
~3v2e~v2@4pe2 , (26)

where in both cases we use a normalization condition of
unity after integration over velocities :

P
0

=
f1(v)dv\

P
0

=
f2(v)dv\ 1 . (27)

Let us introduce the ratio x of the one-dimensional
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FIG. 10.ÈMerger rate R(x) as a function of the ratio of velocity disper-
sions : indicates the velocity dispersion of the galaxies inside the galaxyp

ecluster, and the internal velocity dispersion for the stars inside eachp
igalaxy model.

velocity dispersion of the cluster and the one-dimensional
internal velocity distribution of the stars in each galaxy,

x \ p
e

p
i
\ J6p

e
, (28)

since in our units in which the speciÐc kineticp
i
\ 1/61@2

energy We thus have(3/2)p
i
2 \ 1/4.

f2(v) \ 2~1n~1@2p
e
~3v2e~3@2v2@x2 , (29)

The number of merging events per unit time per unit
volume is given by

R(n, x)\ n2
P
v/0

=
vf2(v)p(v)dv , (30)

where n is the number density of the galaxies and p(v) is the
cross section of merging.

We can also write this result as

R\ n22~1n~1@2p
e
~3R(x) , (31)

where R(x) is the nondimensional merging rate deÐned as

R(x) \
P
0

vcrit
v3p(v)e~3@2v2@x2 dv , (32)

where the upper limit of integration is reached at sincevcritthe cross section p(v) \ 0 for v[ vcrit.Note that in our units it is not immediately clear that this
last expression is dimensionless. If we remind ourselves of
the fact that our internal one-dimensional velocity disper-
sion and the virial radius of an individual galaxyp

i
\ 1/61@2
we can rewrite the expression for R(n, x) asr

v
\ 1,

R\ n22~1n~1@2r
v
2 (36p

i
4)

p
e
3 R(x)

\ 18

Jn
1
x3 n2r

v
2 p

i
R(x) , (33)

TABLE 1

NONDIMENSIONAL MERGER RATE

Model R=
Plummer . . . . . . . . . . . . . . . . 11.9
Plummer (rcut \ 4) . . . . . . 11.5
King (W

c
\ 1) . . . . . . . . . . . 12.4

King (W
c
\ 7) . . . . . . . . . . . 11.8

Hernquist . . . . . . . . . . . . . . . . 13.8

from which it is clear that R(x) is dimensionless since all
physical factors (density squared ] cross section ]
velocity) have been displayed here explicitly.

In rich clusters, the velocity dispersion in the cluster isp
eseveral times larger than the internal velocity dispersion p

iin each of the galaxies. Even for less rich clusters, p
e
[ p

i
,

typically.
shows R(x). For R is close to the asymp-Figure 10 x Z 2,

totic value for x ] O. Thus, for most rich clusters, the
merging rate calculated with constant f (v) gives an error less
than a few percent. For that regime, the dimensionless
merging rate is given by

R=\ lim
x?=

R(x)\
P
0

vcrit
v3p(v)dv . (34)

Note that does not depend on the velocity distribu-R=tion of galaxies within the cluster. The only dependency on
the external velocity dispersion is through the factorp

i
p
e
~3

in the expression for R itself. This is simply the dilution
factor in velocity space : increasing the external velocity dis-
persion decreases the density of galaxies within the region in
which encounters can lead to merging.

shows the nondimensional merging rate forTable 1 R=all models. For nonzero values of x, we can approximate
R(x) for most models by the following Ðtting formula

RP(x) \ 12x2
x2] 0.42

, (35)

FIG. 11.ÈAs with the Plummer model and the HernquistFig. 10,
model, together with their respective Ðtting formulas andRP(x) RH(x),
given in eqs. (34)È(35).
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FIG. 12.ÈCumulative mass is plotted here for the Plummer model and
the Hernquist model. The more extended mass distribution of the latter is
responsible for the higher merger rate of the Hernquist model in Figs. 10
and 11.

while for the Hernquist model a better approximation is
given by the Ðtting formula

RH(x) \ 13.8x2
x2] 0.28

. (36)

shows these Ðtting formulae and experimentalFigure 11
results. The agreement is quite good. The physical reason
behind the fact that the Hernquist model shows a merging
rate that is 15% larger than the Plummer model lies in the
more extended mass distribution of the former, as is illus-
trated in Figure 12.

5. TIDAL EFFECTS

In our discussion of the merger cross section and the
merger rate, we have so far regarded two galaxies as
actually merging if the orbital binding energy of the two
galaxies after the Ðrst encounter is negative. Simple and
straightforward as this assumption is, it may not be realistic
in some extreme cases, as for example in rich clusters. In
such cases, even if two galaxies have become formally
bound after their Ðrst encounter, they may still be disrupted
under the inÑuence of either the tidal forces from the cluster
as a whole or the tidal forces from individual nearby gal-
axies. In the following, we evaluate the magnitude and rele-
vance of both of these e†ects.

5.1. T idal E†ects from the Cluster as a W hole
Consider a cluster consisting of N galaxies. The tidal

force from the cluster would dissolve a pair of galaxies if the
separation of the pair is larger than fR(ND)~1@3, where R is
the radius of the cluster and D is the ratio of the total mass
of the cluster to the mass associated with the individual
galaxies. The coefficient in this expression would be f \ 1/3
in the limit in which the cluster mass is all concentrated in
the center eq. [5-5]). For more realistic mass(Spitzer 1987,
distributions, the tidal force on a typical merging pair is
considerably less, and therefore f is signiÐcantly larger. A
reasonable approximation is therefore to simply take f \ 1.

Thus, we discard a candidate merger pair if their Ðrst
apocenter distance exceeds

r
t,global\ R(ND)~1@3 . (37)

5.2. T idal E†ects from Individual Nearby Galaxies
To determine the tidal e†ects of neighboring galaxies

acting as perturbers requires a somewhat more complicated
calculation. For a pair of galaxies in the process of merging
to become unbound by the encounter with a third galaxy,
this latter galaxy should pass within a distance that is suffi-
ciently close, during a time that is sufficiently quick, i.e.
before the Ðrst fallback. Since most orbits after the Ðrst
Ñyby are highly eccentric, the fallback time can be approx-
imated by the orbital period itself, which is given for a pair
of galaxies by

T \ n
S2a3

m
, (38)

where a is the semimajor axis of the pair and m is the mass
of one galaxy.

We can apply the usual npv argument for the rate in
order to determine a disruption criterion of the pair. For the
pair to be disrupted, we have

npvT º 1 (39)

as an approximate formula. Here we can estimate the
density n to be of order

n \ N/R3 . (40)

A typical relative velocity value is given by the virial
theorem as

vD
S2DNm

R
. (41)

We neglect gravitational focusing for the perturbers,
which will Ñy by with a velocity much higher than the rela-
tive velocity of the two merger candidates around the apo-
center of their Ðrst orbit. This means that we can use the
geometrical cross section

p \ nr2 . (42)

We can make a quantitative estimate for this cross section
as follows. The average amount of energy transferred by a
third galaxy that passes at a distance r from one of the
galaxies in the pair is given in the impulse approximation by

*ED
1
2

m
Am
vr
B2

. (43)

This energy change must be larger than the binding energy
of the pair m2/2a. Thus, we obtain

r2D am/v2 (44)

as the maximum encounter distance to disrupt a pair.
We can Ðnd a second expression for this distance, using

Using both expressions to eliminate r andequation (39).
substituting v from we Ðndequation (41),

a [ (2/n4)1@5RN~1@5D1@5 (45)

as the condition for disruption. Taking into account that
the Ðrst bound orbit, after the initial encounter, is likely to
be highly eccentric, we can approximate the apocenter dis-
tance after the Ðrst encounter to be The criterionrapo^ 2a.
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for tidal disruption from a single nearby galaxy then
becomes withrapo[ r

t local,

r
t,local\ RN~1@5D1@5 . (46)

Comparing equations and we see that the latter(37) (46),
critical distance exceeds the former by a factor

r
t,local/rt,global \ N2@15D8@15 [ 1 , (47)

since Dº 1 by deÐnition. Typical values for this ratio will
be D10 for rich clusters.

In conclusion, we see that the tidal forces exerted by
neighboring galaxies are less important than the tidal force
exerted by the parent cluster as a whole, in its e†ectiveness
to disrupt a galaxy pair while it has become bound after its
Ðrst encounter.

How large is the critical distance r
t
\ min (r

t,local,for tidal disruption in real clusters? For ar
t,global) \ r

t,globalcluster of N galaxies, and using the notion introduced in
we Ðnd that the half-mass radius of the clusterequation (28),

is larger than that of the individual galaxies by a factor of
ND/x2. Thus, using we obtainequation (37)

r
t
\ (ND)2@3x~2r

h
, (48)

for the maximum apocenter distance after the encounter at
which tidal disruption can be avoided.

To sum up, tidal e†ects will disrupt those mergers that
have a binding energy less than a critical value given byE

t
,

E
t
D

M2
r
t

\ [5x2E
(ND)2@3\ 5

4
x2

(ND)2@3 , (49)

where we have used with E the internal energyequation (2),
of one galaxy in our units ; see(E\ [14 eq. [6]).

For typical clusters, lies in the rangeE
t

0.01[E
t
[ 0.1.

For example, for a cluster with N \ 100, D\ 3, and x \ 2,
we have while for a rich cluster with N \ 1000,E

t
D 0.1,

D\ 10, and x \ 3, we have E
t
D 0.02.

5.3. Sensitivity of Cross Sections to T idal E†ects
In order to calculate the cross section as a function of

critical binding energy for tidal disruption we couldE
t
,

perform a systematic search as we did for the case of E
t
\ 0.

Since this would require rerunning many of our simulations
separately for each value of it would be preferable toE

t
,

check whether an appropriate approximation exists that
would allow us to derive a merging criterion for nonzero E

tto a reasonable accuracy.
The merging criterion is expressed as

E1\ E0] *E\ E
t
, (50)

where and are the orbital binding energy of twoE0 E1galaxies before and after the Ðrst encounter, and *E is
deÐned as *E is a function of collision parametersE1[ E0.
o and v, or and as described inr

p
v
p
, ° 3.

As an approximation, we assume that *E is determined
essentially by alone, at least when the relative velocity isr

pclose to the critical velocity for merging. Thus, we have, as a
Ðrst approximation,

*E\ [12kvcrit2 , (51)

and therefore

E1\ 12k(v2[ vcrit2 ) . (52)

It is reasonable to expect this assumption to be quite good
for most cases since is determined mainly by the potentialv

penergy at minimum separation and depends only weakly on
v, the velocity at inÐnity.

To test whether this approximation is satisfactory, we
compare the result of our numerical experiments and the
theoretical estimate obtained by assuming that *E is inde-
pendent of the velocity at inÐnity. shows theFigure 13
orbital energy of the relative motion of the two galaxies, in
units of the kinetic energy associated with the critical veloc-
ity vcrit,

vorb\ 2Eorb
kvcrit2 , (53)

plotted against the initial orbital velocity at inÐnity, in units
of the critical velocity. Note that is calculated for thevcritpericenter distance derived from the impact parameter or

pthrough the two-body Keplerian gravitational focusing
approximation. The approximation of velocity-independent
energy dissipation, given by is given inequation (52), Figure

by the solid curve.13
The agreement between theory and experiment is excel-

lent for a wide range of initial relative velocities. Therefore,
in the following we will assume that *E is a function of r

palone.
shows the e†ects of nonzero in terms of theFigure 14 E

tdi†erential merger rate v3p. It is clear that the reduction in
the merging probability is signiÐcant, especially for the
Hernquist model. The reduction is largest for lower veloci-
ties, for which a typical binding energy of the orbit after the
Ðrst encounter is lower, and therefore the vulnerability to
tidal e†ects is larger.

gives the nondimensional merger rateFigure 15
R\ R(O) as a function of The dependence of onE

t
. R= E

tis similar for di†erent models. For rich clusters with E
t
D

0.02, the merger rate is to of the value for For a34 12 E
t
\ 0.

FIG. 13.ÈNormalized orbital energy after the Ðrstvorb (eq. [52])
encounter plotted against the initial relative velocity at inÐnity inv/vcrit,units of the critical velocity for merging. Open circles are the results for the
Plummer model, and Ðlled circles are those for the Hernquist model. The
curve shows the approximation that *E is independent of v (eq. [51]).
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FIG. 14a FIG. 14b

FIG. 14c

FIG. 14.ÈSame as but for nonzero values of the critical binding energy for tidal disruption Solid, short-dashed, long-dashed, and dot-dashedFig. 9, E
t
.

curves are results for 0.02, 0.04, 0.08, respectively. (a) Plummer, (b) King model with (c) Hernquist model.E
t
\ 0, W

c
\ 1,

more modest cluster, with the merger rate hasE
t
D 0.08,

dropped to of the value for13È15 E
t
\ 0.

Theoretically, R should reach zero for some Ðnite value of
Thus, a Ðtting formula of the formE

t
.

R\ R0
AE

t,0[ E
t

E
t,0

Bc
(54)

would be an appropriate formula. We found E
t,0\ 0.25

and c\ 3 to give a reasonable Ðt for both a King model
and a Plummer model.(W

c
\ 7)

6. APPLICATIONS : MERGING IN CLUSTERS OF GALAXIES

As a straightforward application of the merger rates we
have determined in the preceding sections, let us take a

cluster of galaxies with a three-dimensional spatial density n
and a one-dimensional velocity dispersion for the motionp

eof the galaxies in the cluster. These galaxies are all con-
sidered to be given by identical Hernquist models, with
half-mass radius and internal one-dimensional velocityr

hdispersion We can use the asymptotic expression forp
i
. R=the merger rate, given by equations and with the(34) (36),

relation between the virial radius and the half-massr
vradius given byr

h
equation (4).

For a cluster of galaxies with a one-dimensional velocity
dispersion of km s~1, we can express our main result inp

ephysical units as follows. Under the assumption that all
galaxies have identical halos, with an internal one-
dimensional velocity dispersion of km s~1, we Ðnd ap

irelative merger rate (per unit volume of 1 Mpc3 Gyr~1) of
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FIG. 15.ÈMerger rate R(x) as a function of the critical binding energy
for tidal disruption Solid, shortÈdot-dashed, longÈdot-dashed, andE

t
.

short-dashed curves are results for Plummer King(rcut \ 23), (W
c
\ 1),

King and Hernquist models, respectively.(W
c
\ 7),

Rrel\ 0.0084
A n
1 Mpc~3

B2A r
h

0.1 Mpc
B2

]
A p

i
100 km s~1

B4A300 km s~1
p
e

B3
Mpc~3 Gyr~1 ,

(55)

where n is the density of galaxies in the galaxy cluster. If we
approximate the cluster by a collection of N galaxies evenly
distributed within a radius R, we Ðnd a total merger rate of

Rtot\ 0.0020N2
A1 Mpc

R
B3A r

h
0.1 Mpc

B2

]
A p

i
100 km s~1

B4A300 km s~1
p
e

B3
Gyr~1 , (56)

corresponding to a Ðducial merger timescale of t
m

\ 5.0
] 1011 yr. In order for merging to occur at a rate that is
signiÐcant over a Hubble time, we would require a rate that
is 2 orders of magnitudes larger. For example, we could take
a cluster with 100 galaxies, within a radius of 1 Mpc. If we
keep the same Ðducial values for the other parameters given
in mergers would occur at a rate of, onequation (56),
average, once every 50 Myr.

This merger rate is an overestimate, however, since we
have not yet taken into account the disruptive e†ects of
tidal interactions, which was discussed in the previous
section. The corresponding correction factor, stemming
from a Ðnite is fairly large. For example, for N \ 100,E

t
,

D\ 10, and the correction factor isp
i
/p

g
\ 0.33, R/R0around 0.25. Thus, we conclude that in the above case a

merger occurs only once every 200 Myr.
Here we assumed that the cluster is in dynamical equi-

librium, which is certainly not true for clusters with, for
example, substructures. To apply our result to such clusters,
we need rather detailed knowledge about how the substruc-
tures evolve.

7. SUMMARY

We have presented cross sections and reaction rates(° 3)
for merging events to occur during encounters of equal-(° 4)

mass spherical galaxies, Ðrst in isolation and then in the
presence of a background cluster Our results are easily(° 5).
applied to estimate the merger rate in clusters of galaxies
(° 6).

At Ðrst glance, the restriction to spherical galaxies might
seem somewhat restrictive. However, our numerical calcu-
lations as well as our very successful analytic approx-
imations show that the merger rate is largely determined by
the outer few-to-10 percent of the mass distribution in the
galaxies. For realistic galaxies, even with only a relatively
small amount of dark matter, it is therefore the halo mass
distribution that determines the merger rate. Even if halos
were signiÐcantly Ñattened, it would be rather surprising if
our results would be a†ected by more than a factor of 2. For
practical purposes, therefore, we are conÐdent that our
results can be applied to galaxy clusters directly as they are
given in ° 6.
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