銀河の形成と進化
惑星学 \mathbf{A}
宙の始まりから惑星形成まで
牧野淳一郎
神戸大学 惑星学専攻
講義概要
1．宇宙の始まり・宇宙最初の天体
2．銀河の形成と進化
3．星形成•惑星形成（I．標準モデル）
4．星形成•惑星形成（II．系外惑星と最近の発展）
と書きましたが様子ををみながら

[^0]
- 系外惑星発見からの歴史
 - 現在の理解と今後の発展
 霉䄈泾㘳

銀河形成と比べてみる
•銀河形成の理論・シミュレーションは，現在は初期条件
は決まったといっていい。
・これは，既にのべたように宇宙論的パラメータと呼ばれ
る，バリオンの量，ダークマターの量，ダークエネル
ギーの量，膨張速度，密度ゆらぎのパワースペクトルと
いったものがマイクロ波背景輻射や超新星の観測から正
確に決まったため。
•密度ゆらぎのパワースペクトル（言い換えるとダークマ
ターの性質）が決まる前は銀河形成理論も初期条件と形成
過程について大論争があった。Monolithic collapse と
hierarchical formation
銀河形成／星形成
惑星形成
星形成はまだなんだかよくわからないというのが現状だが，
では惑星形成は，
非常に大雑把なところはわかっていると思っている。
・ガスが冷却•重力収縮して星になる。
•角運動量が大きな成分は星に落ちないでガス円盤に
・このガス円盤がさらに冷却するかなんかしてダスト成分
が集まって惑星に
－星は，重力不安定な高密度•低温なガスが重力収縮して

 ・シミュレーションも，計算機の速度という以上に原理的
困難がまだある。
－コールドダークマターシナリオがー般的になると，
\bullet

- 銀河形成の教訓：初期条件がわからないとなかなか本当
- そういう意味で，星形成の理解はまだかなり初期段階と
いえる

銀河形成と比べてみる（2）
－

星形成について整理

星形成と惑星形成

－星形成

－惑星形成の標準ないし京都／林モデル －minimum solar nebula model シナリオ紹介

わかっていないこと

 hierarchical formation

銀河形成／星形成

星形成はまだなん

常

> では惑星形成は，

非常に大雑把なところはわかっていると思っている

- ガスが冷却•重力収縮して星になる。
- 角運動量が大きな成分は星に落ちないでガス円盤に

といっても基本的には1970年代にできた「京都モデル」な いし「標準モテル」
－「原始太陽系星雲」を想定：これは，大雑把には「現在あ る惑星」がその場所にあるダストが集まってできたとし ，最初はダストの他に水素・ヘリ －その中で，ガスとダストが分離し
•詳しくは次のスライド以降で

986I •Ге ұә＇！！

 しかし，理論的には惑星ができるのに時間がかかりすぎ
る，という問題があった

－惑星が成長すると成長速度が遅くなる（質量の $1 / 3$ 乗） －太陽から遠いと成長速度が遅くなる（距離の 3 乗）
海王星は存在しないはず（形成時間 100 億年以上）

686T ҰлемəҰS РUе［II．ЈӘЧҰӘМ
－微惑星の質量分布の時間変
化を「モンテカルロ」計算

楽
－最初深いべき（ -2.5 乗く
 そこからさらに重いものが
できる

惑星形成

星形成はまだなんだかよくわからないというのが現状だが，
 では惑星形成は，

非常に大雑把なところはわかっていると思っている。

- ガスが冷却•重力収縮して星になる。
- 角運動量が大きな成分は星に落ちないでガス円盤に
- このガス円盤がさらに冷却するかなんかしてダスト成分

標準的な惑星形成理論

形成時間問題への解

暴走的成長（Wetherill and Stewart 1989）

> それまでの理解：秩序的成長。微惑星は同じように重く
なる
暴走的成長：周りよりも少し重くなったものが他より速
く成長してどんどん大きくなる

•大きいので衝突しやすい
－重いので，徴惑星同士の重力の効果も大きい
－円軌道に近いので，重力の効果がさらに大きい

速く成長する理由

[^1]－

（理科年表から。小久保による）

Kokubo and Ida 1996
率」，Oの大きさは微惑星

－細いリング状領域の
シミュレーショ，衝
突•合体も扱う
－衝突の時間スケール
は惑星大きくして短
く
－暴的成長が起きるこ
とを確認

寡占的成長
－Kokubo and Ida 1998
－少し広い領域を計算
－ほぼ同じ質量の原始惑星
がほぼ等間隔に並ぶ
－大雑把には，この間隔に
ある質量を集める，とい
うことで原始惑星の質量
が決まる。
問題は形成時間だけ？

[^2]
Ida and Makino 1992a，b， 1993

暴走的成長＋寡占的成長

[^3]| 惑星落下問題 |
| :--- |
| •微惑星が原始惑星に成長していく途中で，やっぱりガス |
| の抵抗でエネルギー，角運動量を失って，太陽のほうに |
| 落ちてしまう。 |
| •落ちないようにする都合の良いモデルもあまりない |
| ・ガス抵抗は重力相互作用によるもの。 |
| これも未解決 |

\square

－ダストは最初は小さい。これが原始太陽系星雲の中で衝突•合体で成長していくと考えると，途中の1メートルくらいになったところでガ スの抵抗でエネルギー，角運動量を失って，太陽のほうに落ちてし まう。
－落ちないようにするのが，「自己重力不安定モデル」。合体とかする前に赤道面に薄い層を作り，それが自己重力で一気に分裂，いきなり キロメートルサイズになるとする。
－静かに赤道面につもるのは無理（乱流が起こるはず）という批判あり
－ガス抵抗は普通の流体力学的抵抗
未解決の問題

何故未解決か？

もちろん，未解決なので何故かわからない。

> - みんなそろって大きくなる, という仮定が全然嘘だった ・が, その仮定に問題がある, とは多くの人は思ってな かった

- ガス抵抗をいれたシミュレーションはいくつかあり
- ガス円盤自体は解かない。抵抗を式でいれる
- なので，どうしても落ちる

惑星落下問題は？
－京都モデルは「仮定」
系外惑星 (系) は極め

が多様だということ。

- 京都モデルで多様性を説明できるか？
- そもそも京都モデルで太陽系を説明しないといけない

系外惑星発見からの歴史

 ＊
 －

狘

－系外惑星発見からの歴史

－太陽以外の恒星にも惑星はあるはず，とは考えられて
いた。
色々な探査の試みもあった。

「発見できなかった」という報告の例： $1995 / 8$ Walker et
al． 21 個の恒星の 12 年にわたる精密観測で「惑星はない」

$$
\text { - Marcy たちは, 1995/11 から半年の間に } 6 \text { 個もの惑星を発見 }
$$

－視線速度：我々に近づく／遠ざ
この星の場合最大 $70 \mathrm{~m} / \mathrm{s}$ 程会
変化

$$
\begin{aligned}
& \begin{array}{l}
\text { プラー } \\
\text { からの } \\
\text { ずれを } \\
\text { 方移と } \\
\text { ごく小 } \\
\text { し }
\end{array} \\
& \begin{array}{l}
\text { のずれ } \\
\text { 方変移と } \\
\text { すごく }
\end{array} \\
& \begin{array}{l}
\text { 観測: ト } \\
\text { もの。恒 } \\
\text { てき位 } \\
\text { て置 }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { トランジット法とは? } \\
& \text { NASA のサイトのトランジット法説明動画 } \\
& \text { •惑星が主星の前を通ると主星からの光を惑星がさえぎるので暗くな } \\
& \text { ることを利用 } \\
& \text { •惑星の軌道面が我々のほううを向いていないと観測できないが, 向い } \\
& \text { ていると観測しやすい。 } \\
& \text { •衛星からだと, 大気のゆらぎや雲等の影響がなく, ちょっと暗くなる } \\
& \text { だけでも観測できる。 }
\end{aligned}
$$

－多様な采外惑星 －理解．．． －今後の発展

なぜ Mayor たちが最初に発見できたか？	
－Marcy たちはその前の 7 年にわたって 100 個の恒星の観測をして いた。	
が，そもそも「4日」というようなとてつもなく短い公転周期の巨大惑星が存在しているとは想像もしていなかった。木星は 12 年。	
もちろん，太陽にも水星のような周期の短い惑星があるが，小さく，軽いので視線速度法では発見できないと考えられていた。	
－Mayor たちは連星系の研究者だったので，（おそらく）何も考えない	
「思い込み」が発見を妨げた例	
「木星は遠くにしかできない」という「理論」もあったい （全く余談：Marcy は昨年，大学院生，ポスドクへのセクハラで処分。アメリカでは有名教授がセクハラで処分される事例は結構ある）	
その後の発展	
Exoolanet Discoveres Throuch the Years－2016 年時点で 3400 個ほどの系外	
=own	
x^{2}	－ 2000 個ほどは，系外惑星探査専用衛星「ケプラー」が発見したもの
	－ケプラーで使っている方法：「ト ランジット法」

惑星探査の方法

多様な系外惑星

 そうかもしれないが，「観測バイアス」も考えないといけない。
年からなので…
－トランジット法でも，大きな惑星，主星の近くの惑星（トランジット
の回数が多い）がみつかりやすい。ケプラー衛星の寿命より長い周期

のものは惑星と確認できない。
－トランジット法の場合，さらに，トランジットが起こる確率が軌道半
径に反比例するので，遠くの惑星はみつかりにくくなる。
つまり：現在のところ確かなことはいえない。理論•観測の発展を待つ必
要あり。
今後の発展
－「惑星ができる過程」の直接観測（電波望遠鏡でのガス円
盤の観測）
盤の観測）
より高精度
よる「観測
 がこれから 10 年でかなり進むと期待，，

多様な系外惑星

これは質量がわかっているもののみ（視線速度法）

多様とはいえ，，

質量と軌道半径では

同じ軌道半径なら太陽系の惑星よりはるかに重いもの同じ質量なら太陽系の惑星よりはるか主星に近いもの

惑星半径と軌道半径では

たりが多いが，

－基本的に「大混乱中」

まだ何を説明するべきかよくわからない：系外惑星の
「本当の」分布はまだ謎
とはいえ：これまでの惑星形成理論は基本的に我々の とはいえ：これまでの惑星形成理論は基本的に我々の
太陽系が対象。木星のような巨大惑星が主星のすぐ近 くにあるとかは想定外
離心率が大きい（細長い楕円軌道の）惑星も多数発見
－様々な惑星系を統一的に説明できる理論体系が必要
だが…
事務連絡
－講義は，最初の 4 回を牧野，後半 3 回を中村が担当し，そ
の次の回は試験です。
－試験は，配布資料と手書きノートのみ持込可です。
－牧野の講義資料はとりあえず
http：／／jun－
makino．sakura．ne．jp／kougi／wakuseigaku－A
にあります。

[^0]: 宇宙の始まり・宇宙最初の天体

 > •宇宙論の歴史 •現在の描像 •残っている問題 $\quad-$ インフレーション $\quad-$ ダークマター $\quad-$ ダークエネルギー

[^1]: 研

[^2]:
 －ダスト落下問題（微惑星形成問題）
 －惑星落下問題

[^3]:

 球型惑星：原始惑星からさらに作らないといけない
 少数多体問題。理論的理解も計算も難しい
 ような離心率の小さい色々なデルが提案されている

