銀河の形成と進化
惑星学 \mathbf{A}
宙の始まりから惑星形成まで
牧野淳一郎
神戸大学 惑星学専攻
講義概要
1．宇宙の始まり・宇宙最初の天体
2．銀河の形成と進化
3．星形成•惑星形成（I．標準モデル）
4．星形成•惑星形成（II．系外惑星と最近の発展）
と書きましたが様子ををみながら

[^0]系外惑星

 - とりあえず見た目を
 - 重力（だけ）による天体形成

带
置

とりあえず見た目を

星形成と惑星形成

- 星形成
 - 星形成を考えるいくつかの立場
 初代星 －惑星形成の標準ないし京都／林モデル minimum solar nebula model シナリオ紹介理論的問題
 －わかっていないこと

$$
\begin{aligned}
& \text { - 宇宙論の歴史 } \\
& \text { •現在の描像 } \\
& \text { •残っている問題 } \\
& \quad-\text { インフレーション } \\
& \quad-\text { ダークマター } \\
& \quad-\text { ダークエネルギー }
\end{aligned}
$$

于䒠の始まり，

http：／／www－astro．physics．ox．ac．uk／～wjs／apm＿grey．gif
支配方程式：
太陽系，星団，銀河，銀河団，宇宙の大規模構造などの基本
方程式

$$
\frac{d^{2} r_{i}}{d t^{2}}=\sum_{j \neq i}-\frac{G m_{j} r_{i j}}{r_{i j}^{3}}
$$

計算機「実験」
実際に星や惑星をどこかにおいて実験するのは不可能計算機で支配方程式を積分することで実験の代わりにする $=$ 「計算機実験」
実験そのものとはちょっと違う
－こちらが入れた物理法則以外は入ってこない（はず） －計算があっているとは限らない

大規模構造（距離情報あり）— SDSS スライス

こういう系をどうやって研究するか
－観測する：ほとんど「ある瞬間」しかわからない。恒星の運動は最近ある程度見えるものも。 －理論を立てる：立てた方程式が簡単には解けない… －実験する：重力が重要な采の実験は実際上不可能

「計算機实験」が割合重要。

太陽系の場合
太陽の回りを各惑星が回っている。
惑星同士の重力は太陽からのに比べて 3 桁程度小さい（木星
の質量は太陽のほぼ 0.1% ）。従って ケプラー問題＋摂動

それらは安定なのか？

重力不安定による揺らぎの成長

太陽系の安定性

－古典的には「ラプラスが安定性を証明」。これはでも無限
の長期間ではなかった？
－現在では，「冥王星の軌道はカオスである可能性あり」
「水星の軌道も大きく変化して金星や地球とぶつかる可能
性も」
－系外惑星の多様性が明らかになってきたこともあり，問
題の意義が大きく変化した

•宇宙全体は一様に膨張しているとすると，惑星とか，太
陽とか，銀河はどうやってできたのか？
•銀河は重力で星が集まっているだけなのにどうして潰れ
てしまわないのか？
という問題。
まず，どうしてそれら，とりあえず銀河とか，ができたの
か？ということ。
ダークマター
見えるバリオンの量（星と，あとは電波や X 線でみえる水
素ガスの量）：例えば銀河系の質量や，銀河団の質量のほんの
部でしかない。
銀河 ：回転曲線
銀河団 ：X 線ガスの温度から質量を推定
•重力の理論が間違っている？
• なんだかわからないものがある？
宇宙の大規模構造形成のシミュレーション

ここでやっていること：

宇宙はなにからできているか

－宇宙の物質のほとんどは，偉そうにいえば「未知の素粒
子」，わかりやすんえばなんだかわからないもので
ある。
－宇宙は全体としては一様だが，摇らぎがあって完全に一
様なわけではない。宇宙膨張のに間にその摇らぎが成長し
て銀河とか銀河団ができてきた。

ンで調べることである程度はチェックできる。
わかること

- 宇宙全体としては膨張していく
- 最初に密度が高いところは，他に比べて相対的に密度が
どんどん大きくなっていく。
- 特に密度が高いところは，そのうちに膨張しきって潰れ
（このシミュレーションでは）最初に小さいものが沢山
できて，それらがだんだん集まって大きなものになる
で 大雑把にいうと，銀河とか銀河団はこのようにして潰れ
たもの。
問題点

ると暗くなる）

＇2 点 7 纴

一般の 3 体問題：不安定安定（最終）状態： 2 体銀河ではなにが起きるか？

銀河が潰れないわけ

> 銀河とかがどうして潰れてしまわないかという問題にたいす る形式的な答

> ほぼそのような「力学平衡状態」にあるから
> まあ，これはちょっと言い換えでしかないところもある。
まり，依然として
> －なぜそのような状態に到達できるか？
－到達できるとしても，どのような初期状態から始めたら
どのような平衡状態にいくのか？

そんなことが本当にわかるのか？

初期の揺らぎ：（銀河や銀河団になる細かいところま
では）直接には見えない

- 昔の宇宙の膨張速度：直接には見えない
- ダークマター：見えるかどうか（あるかどうかも）わか

そんなことは可能か？という問題。
－問題点の解決．「ガスが収縮して星になる」と こういった問題点の解決：
ころも全部シュレーションすればいい
－そういう方向の研究ももちろん進められている
・が，まだ，シミュレーションの信頼性その他に問題が，
animation

銀河の「力学平衡状態」

[^1]これを「力学平衡状態」という。

ジーンズ不安定
良く考えると，宇宙膨張と構造形成の関係はあんまり簡単で
はない。
・ビッグバン直後の宇宙は熱平衡，一様密度
•今の宇宙は全く一様ではない（少なくとも「小さな」ス
ケールでは。メカ゚ーセクとか）
•理論的にはどうやって一様でなくなったか？
理解する枠組み：重力不安定（ジーンズ不安定）

理解する枠組み：重力不安定（ジーンズ不安定）
流体のジーンズ不安定

$$
\begin{aligned}
& \text { - 温度, 密度がどこでも同じ }(\text { 一様 }) \text { で無限に広がっている } \\
& \text { なガスを考える。宇宙が全部そういう状態とする。 } \\
& \text { - 「音波」を考える。これは, 圧縮されたところは圧力が } \\
& \text { 上がって今度は膨張, 膨張したら今逆に収縮, とい } \\
& \text { うことを繰り返す波。 } \\
& \text { - 波長と周波数は反比例。 }
\end{aligned}
$$

> 「振幅」（最大圧力，最大密度）が同じで波長が違う波を考
える

波のある場所（波長の $1 / 8)$ とかでの圧力：波長が違って
も変わらない
圧力の差が力）

なぜ力学平衡にいくのか？

第一の問題に対する一般的な答初期状態が特別の条件をみたしていない限り，振動があった にしく。 （但し，回転があると別：渦巻銀河，棒洞巻銀河，，前に見せた銀河形成のシミュレーションはその一例。

ジーンズ不安定（続き）

$$
\begin{aligned}
& \text { - 「理論的」枠組み:大抵, 摂動論 (解けるものからの無限 } \\
& \text { 小のずれを扱う) } \\
& \text { - ここでもそういう話 } \\
& \text { •方程式書いて計算したりするのはこの講義の趣旨ではな } \\
& \text { いので, そういうことをしないでの説明を試みる。 } \\
& \text { ・ダークマターだと面倒なので断熱のガスで考える。 }
\end{aligned}
$$

が
 N N

－重力：波長が長いと強くなる。 3 次元空間で，無限に広 がった板からの重力は距離によらないので，波が長いと その分質量が増えて力が大きくなる。

また，この，重力が圧力に勝って密度が高いところが収縮す
る不安定性を「ジーンズ不安定」という。
2 倍長い波長を考えると：重力は 2 倍，圧力は 4 倍，圧力の微
分は 2 倍で，圧力の微分と重力が釣り合う。
このためジーンズ波長は音速に比例。

初期条件と力学平衡の状態の関係

あまり役に立つことはわかっていない。初期条件と最終状態
の間の関係をいろいろ調べている段階。
このへんは，基本的には前にいった数値計算でやられる。
－ 1996 年頃に，宇宙論で考えるような初期条件の範囲内で
 じであるというシミュレーション結果が出た。
－が，この結果は実は間違い であったことが，より大規模
なシミュレーションからわかった。
スーパーコンピューター「京」を使ったシミュレーショ
ンで，ようやく，現実に近い宇宙モデルでどうなるかが
少しわかってきた。少し

すみません，ちょっとだけ式を：
ジーンズ波長 $\boldsymbol{\lambda}_{J}$ を式で書くと， $\lambda_{J}=\sqrt{\frac{\pi}{G \rho}} v_{s}$

膨張宇宙とジーンズ不安定

音速が 2 倍大きくなるとジーンズ波長は何倍になるか？
音速が大きい：圧力は音速の 2 乗に比例して大きくなる $v_{s}:$ ガスの音速。 $G:$ 万有引力定数。
$\rho:$ ガスの密度。 $G:$ 万有引力定数。 $f=-G m_{i} m_{j} / r_{i j}^{2}$
－ガス：「宇宙膨張」によってガスは断熱膨張，急激に温度
が下がる。

いずれにしても，宇宙膨張によって，安定だった音波的ゆら
ぎが不安定になって成長できるようになる。

ビッグバンからの天体のできかた

現在の標準的な理解は以下のような感じ

- ダークマターの密度ゆらぎからの成長が，宇宙の色々な
天体•構造の起源。
- 密度ゆらぎの大きさは，波長が短いところでは「ほぼー

ここで「大きさ」は，「不安定が十分成長して天体になる
までの時間」

合体して大きくなっていく。

体•構造の起源。

－－
ッ゙ッグバンからの天体のできかた（続き 2）
但し，この電離には，その頃形成されつつあった（？）巨大
ブラックホールからの放射がきいているという説もある。
ダークマター天体がさらに成長すると，電離したがスも
重力で集めることができるようになる。そうなるとその
ガスが冷却し，星ができる。冷えたガスはダークマター
天体の中心に集まるが，全体として回転があると円盤状
になる（円盤銀河，渦巻銀河）
この辺，観測からも理論からもまだよくわかっていない
ことが多い。理論は，シミュレーションがまだ精度がな
いため。観測は，非常に遠くの暗い天体を観測する必要
があり，単純に望遠鏡の性能の問題。
恒星円盤，スパイラル構造
ここからは銀河円盤とそれに関係する話題を少し。

－円盤の質量

ビッグバンからの天体のできかた（続き）
－現在のところ，最初にできるダークマター天体は地球く
らいの質量と考えられている。これはダークマターを構
成する素粒子 $($ だとして）の質量できまる。
・ダークマター天体（専門用語では「ダークマターハロー」
ということが多い）の質量が太陽の $10-100$ 万倍くらい
まで成長すると，その重力で集めたガスか宇宙で最初の
（第一世代の）星ができると考えられている。
• この星がどういうものかはよくわかっていないが，質量
が太陽の 100 倍程度ある重いものができ，紫外線や超新
星としての爆発エネルギーで宇宙全体の水素ガスをもう
一度電離すると考えられている。

・ブラックホールの成長については，今まで全く観測され
ていなかった重力波の観測で今後 $10-20$ 年の間には色々
なことがわかると期待はできる。
円盤状の系の例
円盤に近い恒星（とは限らない）系の代表的な例は以下のもの
である
•円盤銀河の円盤
•原始惑星系円盤
•惑星の周りのリング

[^2]
－銀河円盤では円盤自身やダークマターハローが作る重力
場になって単純な 1 点からの重力（距離の 2 乗に反比例）
ではない：軌道が閉じた楕円軌道ではない
・リング，惑星系では基本的には中心星の重力場，軌道は
閉じた楕円軌道
閉じた軌道の場合には平均運動共鳴や永年摂動の役割が閉じ
ない場合よりもはるかに大きくなり，ケプラー軌道であるこ
とに固有の様々な現象が起きる。

軸対称モードの安定性

前に話をした，ジーンズ不安定と原理は同様に調べることが
できる。違い：

相空間での分布関数）としては扱う

ガス温度が 0 の時

$$
\frac{\underline{V^{\Downarrow} Z}}{z^{y}}={ }^{7 ? .5} y
$$

©
：円盤の面密度（単位面積あたりの質量）
ジーンズ不安定との違い：
－エビサイクル運動が重力を抑える効果になる
－重力が 2 次元的で距離が近いと強くなるために，波長が
短いと不安定で，成長速度も波長が短いほど大きい

- 惑星リングでは典型的には 1 つの粒子は軌道周期程度の
時間で他の粒子と衝突
- 原始惑星系では，重力相互作用と衝突•合体の双方が重
要になる。またガス円盤も重要
- 銀河円盤：
- 銀河円盤：恒星同士は衝突しない。重力による散乱の効
- 銀河円盤は重い，つまり，ダークマターハローやバルジ銀河中心近くの星の集度程自己効果が大
程度。自己重力の効果が大
惑星リング：土星リングでも
- 惑星リング：土星リングでもその質量は土星本体の 10^{-9}
程度
- 原始惑星系円盤では，恒星の質量の 1% 以下

質量の違いは，不安定モードやパターンの大きさに違いをも

たらす。

「現実の」円盤
ここまでの解析の仮定：

- ディスクが無限に薄い
- 重力場や回転の影響はローカルなポテンシャルの微分だ けで書ける
従って，「波長が半径 \boldsymbol{R} に比べて十分小さく，なおかつディ
スクの厚さに比べて十分長い」場合しか正しくない。 ついてのみ適用できる。
ムとンっの辛自

tight－winding 近似
tight winding の近似：要するに，ピッチアングル（スパイラ
ルアームと円の回転方向のなす角度）が小さい＝大体軸対称と同じようにあつかえる。
腕が複数あるモードでも，安定性の振る舞いは軸対称の場合
と本質的に同じ。

亘星円盤の場合

$$
\begin{aligned}
& \text { 同じような分散関係から安定性限界を導くことができる } \\
& \qquad Q=\frac{\sigma_{R} \kappa}{3.36 G \Sigma}>1 \\
& \text { ここで } \sigma_{R} \text { は半径方向の速度分散である。ジーンズ不安定の } \\
& \text { 場合と違って, 係数が流体の場合と微妙に違う }(\pi \text { と } 3.36) \text { 。 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { •十分短い波長では重力が } 3 \text { 次元的になって普通のジーン } \\
& \text { ズ不安定の表式になる }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ズ不安定の表式になる } \\
& \text { •問題は, } \boldsymbol{\lambda}_{\text {crit }} \text { とディス }
\end{aligned}
$$

－問題は， $\boldsymbol{\lambda}_{\text {crit }}$ とディスクの厚さの関係

スパイラルモードの場合
－現状の系外銀河や原始惑星系円盤では結構色々なスパイ
ラル構造が見つかっている

－なので，その話のあと，数値計算ベースの話を少しする

グローバルなスパイラルモードの理論的
困難
－そのような構造を定常的に維持するメカニズムはなにか －そもそもそのようなメカニズムはあるのか
は依然未解決の問題。
－不安定モードは基本的にローカルな角速度で回転するた
め，半径方向に広がったモードはどうしても差動回転の
 －ある形をもったスパイラルアームが時間的に成長したり
定常状態になったりしてくれない

定常密度波理論

けのパターンであるとするものである。エピサイクル周期も
半径に依存するし，なぜ同じ半径では大体位相がそろうのか
とか，うまいことスパイラルパターンがでるようにその位相
が半径によってずれるのかとかは良くわからない。 んな感じにうまいこと軌道がずれていくことでできる見か非定常理論
計算は盛んに行われた

 ると，かなり強いスバイフル構造が数回転で成長する。
しかし，数十回転までいかないうちに Q 値が大きくなり，
そのような構造は消える

そのような構造は消える
－要するに，アームは次々にできたり消えたりするもので
ある，という考え \bullet

グローバルなスパイラルモード

多くの銀河についてそういう構造があるように見える。

巻き込みの問題の回避（？）

定常密度波理論（いわゆる Lin－Shu 理論）。これは，大相

把にはスパイラルアームは実体ではなく，「密度波」だと
非定常理論。これは要するに，アームは次々にできたり
消えたりするものである，というものである。

定常密度波理論

但し，棒渦巻銀河の詳細なシミュレーションでは，アームは
バーの先端からでているが時間変化は結構する（定常ではな
い）ということもわかってきた。
•上でみたように，スパイラル構造についてはそれを定常
的に維持するメカニズムが何か，そもそもそんなものか
あるのか，ということが良くわかっていない。
・しかし，グローバルな非軸対称モードとしてはスパイラ
ルの他にバー不安定があり，これについては非線型領域
で定常なバー構造が存在できることは古くからわかって
いる。
Q 値的には安定なディスクであっても，ディスクだけで
ダークマターハローやバルジがないと必すバー不安定を
起こす，ということが 1970 年代から知られている。但
し，グローバルモートであることから安定性条件等が単
純な形で得られているわけではない
し，グローバルモードであることから安定性条件等が単
純な形で得られているわけではない。

－答があうようになったらわかる？

 こに近付いている？
－あと 1－2 桁？
－ガ －そ

バーとバー不安定

需＋と．4＋ーG入ムーG•

 Saitoh et al． 2005

 оытешиие

 もたれていると考えることができ，このために常に不安 －90年代以降この辺はあまり研究されていなかった

- 本当に星 1 つを作るシミュレーション：分解能が太陽質量より $4-5$ 桁
高い必要あり
- 現在できる限界：粒子の質量が太陽の 1000 倍。 8 桁くらい足りない －星ができる過程のモデルが必要

ガスが十分に低温•高密度になったら，星に変わる，とする いくつかフリーパラメータがある
－超新星の扱いにも同様な問題

銀河円盤

－高分解能計算ではスパイラルアームは自然にできる －アームは定常ではなく，常に生成消滅している
 の観測の色々な特徴を再現できる

星形成についてわかっていること
－この講義では，「星形成についてわかっていること」を整
理しようと思っていた －しかし，なかなか難しい。

余談：ダークマターと恐竜絶滅

－検討すると強い不安定。多分間違っている。

銀河形成の理論の側からみた星形成
•銀河形成シミュレーションで，星ができたり超新星爆発
したりもっともらしい振舞いをしていた
•但し，星 1 つ1つのレベルまで計算しているわけではな
い。ガスやダークマターを表す粒子の質量が，最近の
「高分解能」の計算でも太陽質量の 1 万倍くらいある
・なので，「星間ガスが冷えて，自己重力で集まってくると
適当に星になる」と考える。
いろいろいい加減だが，「定性的には」正しい

$$
\begin{aligned}
& \text { 輻射) }
\end{aligned}
$$

理想化した話：

ムの中での重力不安定を起こし，冷却しながら小さな
のに分裂していく
－薄い円盤はさらにスパイラルモードや，スパイラルアー でリオンは支えられた輻射をだして薄い円盤になる

- バリオンは輻射をだして冷えて中心に集まる。角運動量
- 薄い円盤はさらにスパイラルモードや，スパイラルアー

星形成のシミュレーションの観点 1 つの星の形成シミュレーション形成シミュレーション連星形成シミュレーション
－初期に適当な密度をもつガス球を置く。通例としては，
ある温度で自己重力平衡な解を密度あげて収縮するよう
にする。一様な磁場とか回転もあったりする
・そこからシミュレーション

々なことが起こってその過程は沢山の人が詳細に研究して いる一方，「その初期条件に意味はあるのか」はなかなか難 いる

シミュレーションの問題点

 －星になる前のガスとできた星の両方を流体シミュレーションで一気扱うのは現在のところ不可能星ができるタイムスケール：周りのガスが全部落ちてく
るまで。典型的には 100 万年くらいと考えられている。星を流体として解く：タイムステップ 1 分くらいが必要

 \qquad

 ・シミュレーションも，計算機の速度という以上に原理的
困難がまだある。

ではどうしているか
 にはいったガスは「星」に落ちたとみなす（ sink
－これにはもちろん問題がある。本当は星の表面近くまで
 や輻射圧で赤道面から飛ばされたりするはす。そういう
色々な効果を無視して単に中心星にくっつけると，成長
速度やそもそも成長するかどうかも計算できなくなって
 いるかもしれない

にはいったガスは「星」に落ちたとみなす $(\operatorname{sink}$
particle）

一方，星間ガスの理論の観点からの ガスの振舞い

－但し，これは星形成につながるかというとそうならない。

井上•犬塚2008 の解説記事等）

星形成のシミュレーションの観点

団形成のシミュレーション

Star formation with SPH
－もっともらしく沢山星はできる。
初期条件は？
－星ができるところを本当に計算できてるのか？
銀河形成と比べてみる（2）
・コールドダークマターシナリオがー般的になると，
Monolithic collapse 説は段々フェードアウト（といっ
ても最近の教科書でも生き残っていたりする）
－銀河形成の教訓：初期条件がわからないとなかなかサイ
エンスにならないい
－そういう意味で，星形成の理解はまだかなり初期段階と
いえる
－銀河形成の理論・シュュレーションは，現在は初期条件
は決まったといっていい。
－これは，既にのべたように宇宙論的パラメータと呼ばれ
る，バリオンの量，ダークマターの量，ダークエネル
ギーの量，膨張速度，密度ゆらぎのパワースペクトルと
いったものがマイクロ波背景輻射や超新星の観測から正
確に決まったため。
－密度ゆらぎのパワースペクトル（言い換えるとダークマ
ターの性質）が決まる前は銀河形成理論も初期条件と形成
過程について大論争があった。Monolithic collapse と
hierarchical formation

[^0]: 宇宙の始まり・宇宙最初の天体

 > •宇宙論の歴史 •現在の描像 •残っている問題 $\quad-$ インフレーション $\quad-$ ダークマター $\quad-$ ダークエネルギー

[^1]:

 り正しい）

[^2]: これらは，円盤である，ということについては同じであり，

