銀河の形成と進化
惑星学 \mathbf{A}
宙の始まりから惑星形成まで
牧野淳一郎
神戸大学 惑星学専攻
講義概要
1．宇宙の始まり・宇宙最初の天体
2．銀河の形成と進化
3．星形成•惑星形成（I．標準モデル）
4．星形成•惑星形成（II．系外惑星と最近の発展）
と書きましたが様子ををみながら

[^0]系外惑星

－系外惑星発見からの歴史
－現在の理解と今後の発展

宇宙が膨張するって？
 宇宙が膨張するって

- 一応正しいんだけどあんまりわか,

重力のため，段々彭涱がゆっくりになる。

宇宙膨張の加速

遠方の超新星の明るさを観測する：同じ「赤方偏移」でも膨張のしかたで
距離，従って明るさが違う
物質が少ない宇宙：
暗い
膨張が加速している

どんなふうにゆっくりになるか？
－現代の宇宙物理学の基本問題だった。2000年代はじめま
でほぼ 1 世紀に渡る論争

いて）「平坦な宇宙」
－最近の観測からの示唆：実はゆっくりにならない。無限の
未来に無限に速くなる

宇宙の始まり・宇宙最初の天体

－インフレーション
－ダークマター
－ダークエネルギー
星形成と惑星形成

星形成を考えるいくつかの立場

初代星
－惑星形成の標準ないし京都／林モデル
minimum solar nebula model
シナリオ紹介
理論的問題
－わかっていないこと

> - 宇宙論の歴史
> - 現在の描像
> - 残っている問題
> －光のドップラー効果と考えてもいい。遠くのものは速く遠ざかっているので波長が伸びて赤っぽく見える。
星の一生の概略
•宇宙空間（普通銀河円盤の中）で冷たくなった星間ガスが
重力で集まって星になる。
•星になって中心の密度•温度が十分に上がると，水素原
子 4 個からヘリウムができる核融合反応が始まる。中心
で水素がなくなるまで，安定な核融合が続く（主系列）
•中心がヘリウムだけになると，ヘリウムの核融合が始ま
る。炭素や酸素ができる。
•軽い星だと，炭素や酸素から先には核融合が進まない。
段々収縮して「白色矮星」と呼ばれる星になる。太陽く
らい質量でも半径は 1 万km 程度と小さい。
•軽い星の一生は基本的にはこれでおしまい。
I型超新星
I型超新星

－白色矮星がなんらかの理由で爆発的核融合を起こすと考 えられてる。

モデルは 2 つ。 1 つは，白色矮星が連星になって，相手か －もうひとつは，2 つの白色矮星が衝突して爆発（元々連星系で，重力波をだして軌道が縮む）
－最近は後者が有力？

重力不安定による揺らぎの成長

－宇宙全体としては，（非常に大きなスケールでは）一様で
密度一定であるとしても，小さなスケールになると揺ら
ぎのために一様からずれている。
•宇宙が熱い火の玉から現在まで膨張する過程で，その揺
らぎが自分自身の重力のために成長して，ものが集まっ
てできるのが銀河とか銀河団
では，銀河はどんなふうにできるのか？

$j-\forall \lambda G-\forall$

素ガスの量）：例えば銀河系の質量や，銀河団の質量のほんの ー部でしかな

 －なんだかわからないものがある？

 大きくわけて 2 つの理論 ：

Hot dark matter 質量をもったニュートリノが大量に
あって，それが宇宙の物質のほとんどを占めている。
－Cold dark matter 未知の素粒子があってそれが宇宙の
物質のほとんどを占めている。
実はニュートリノではうまくいかないということがわかって
いる。この場合銀河団とか大きいものはできていても銀河は まだできていないことになってしまうため。

ダークマター候補として最近有力だった粒子の存在の証拠は

¿

> - 宇宙全体は一様に膨張しているとすると，惑星とか，太
陽とか，銀河はどうやってできたのか？
> - 銀河は重力で星が集まっているだけなのにどうして潰れ
てしまわないのか？

> という問題は依然として残っている
> まず，どうしてそれら，とりあえず銀河とか，ができたの
> か？ということ。

宇宙はなにからできているか

$$
\begin{aligned}
& \text { 利中 }
\end{aligned}
$$

ダークマター

$$
\begin{aligned}
& \text { - どちらが本当かというのは簡単にはいえないわけだが, } \\
& \text { 今のところ「なんだわからないものがある」というほ } \\
& \text { うが主流。 } \\
& \text { これはいろいろな状況証拠があるが, 大きいのは重力理 } \\
& \text { 論が違うことにした時に, 銀河毎に重力理論が違うとい } \\
& \text { うわににはいかない (統一的な説明があるはず) とする } \\
& \text { と説明が難しいということ。 }
\end{aligned}
$$

スーパーカミオカンデ

現在の宇宙に対する我々の基本的な理解
•宇宙の物質のほとんどは，偉そうにいえば「未知の素粒
子」，わかりないえばなんだかわからないもので
ある。
•宇宙は全体としては一様だが，摇らぎがあって完全に一
様なわけではない。宇宙膨張の間にその摇らぎが成長し
て銀河とか銀河団ができてきた。
こういった理解が正しいかどうか：本当にこういうやり方で
現在の宇宙の構造ができるかどうかを計算機シミュレーショ
ンで調べることである程度はチェックできる。
てで調べることである程度はチェックでき

ビッグバン宇宙論とマイクロ波バックグラ

[^1]ビッグバン宇宙論とマイクロ波バックグラ ワンド

ビッグバン宇宙論から予言できたこと（1950 年前後）

－元素合成

－マイクロ波バックグラウンド

（ガモフ他による）
 ＂

マイクロ波バックグラウンド

- 元素合成が終わるとほぼ水素＋ヘリウムの宇宙。最初は
温度が高いのでプラズマ状態
- 30 万年くらいたつと，温度が 3000 K くらいまでさがっ てプラズマから中性の原子に
－それまで，輻射と物質が熱平衡だったのが，物質がいき

－輻射は，そのあと宇宙膨張によってひきのばされて，現
在の宇宙では 2.7 K のマイクロ波となって観測される
これもガモフ他が 1940 年代に予言
マイクロ波バックグラウンドの観測

が，他方で，「あまりに正確に一様過ぎる」という問題を引き結合 recombination という）が起こったことを示す。

元素合成

－最初の宇宙はものすごく密度が高い。どういう物質かは
素粒子論の話。
－どっかの時点で通常の核物質（中性子，陽子＋電子）にな
り，さらに膨張して密度が下がる過程で水素原子，重水
素，三重水素，ヘリウムになる。
－当時の「弱い相互作用」の理論からヘリウムの量を予言
した。恒星内に大量のヘリウム $4($ 質量比で大体 $1 / 4)$ あ
ることを自然に説明。
－他の元素 $($ ヘリウム 3 ，重水素，リチウム 7$)$ 等の量から
「物質の量」が決まる。（観測と，い）

マイクロ波バックグラウンドの観測

－ 1964 年，ベル研のペンジアスとウィルソン，電波天文学謎な雑音がどうしても消えなかった

 （1965）

－ものすごく正確に熱平衡分布（プランク分布）に近い電 波が

宇宙のあらゆる方向からものすごく高い精度で同じ強
さで
インフレーション

A．Guth，佐藤勝彦らがほぼ同時，独立に提唱

－インフレーションモデルでは，ビッグバン後のある時期
宇宙膨張が指数関数的なため，元々は宇宙の内側だった
マイクロ波背景輻射がきているのははその時には宇宙の
外側だったとしても，インフレーション前には内側だっ

始まりは適当な場を仮定すれば起こるが，何故止まる
のか？

はインフレーションが予言するものと非常に良く一致。

では「物質」のほうは？

暴＇\％8＇97：「一G
－ダークマター：普通の物質「ではない」なにか。現在の宇
宙ではほぼ重力しか働いていない
－ある範囲で十分に一様になるためには，その範囲でほぼ
熱平衡になる必要がある。
\qquad
 ならない。

－つまり，違う方向からの輻射が全て熱平衡にあったはず

$$
\begin{aligned}
& -0 \\
& \stackrel{-}{+6} \\
& +6
\end{aligned}
$$

インフレーション（続き）

－何故インフレーションのようなことが起きるか，という
ことに説明がついているわけではない
－が，そのようなことがおきたとすると，いろいろなこと

－「宇宙全体」がもっていた量子ゆらぎが，インフレーショ
ンによって宇宙がひき伸ばされるとそのまま固定される
ので，基本的には波長によらずゆらぎの大きさが同じに
ので，基本的には波長
なる $($ んだそうです）

というわけで，現在の理解をもう一度

$$
\begin{aligned}
& \text { - ダークエネルギーは重力とは逆に働いて, 空間を膨張さ } \\
& \text { せる。遠い未来には指数関数的に膨張 } \\
& \text { - つまり, 宇宙初期のとは違うけれど, 現在の宇宙も「イ } \\
& \text { ンフレーション」的な膨張過程にある } \\
& \text { •「ダークエネルギー」は, 全く正体不明。ほぼ名前つけ } \\
& \text { ただけ }
\end{aligned}
$$

円盤銀河とダークマター －普通の物質とは違う，重力以外ではほとんど相互作用し
ない物質が実は宇宙の物質の大半を占めると「仮定」导
No
かo
－そうすると，そういう物質は，バリオンと違って重力で
集まっても薄い円盤にならない。球状の形をとる
・みえている銀河は薄い円盤だが，実はそれはダークマ
ターがほぼ球状に分布しているものの底に沈んでいるも
のだということになる。
•回転曲線の問題も安定性の問題も解消 －回転曲線の問題も安定性の問題も解消

何故他は駄目か
ニュートリノは相互作用が非常に弱く，また質量がある
ことはほぼ確定した $(2015$ 年ノーベル物理学賞 $)$
もしもダークマターの大半がニュートリノだとすると，
宇宙初期のゆらぎのうち銀河団くらいの大きさより小さ
いものは，ニュートリノの運動によってならされて，消
えてしまうこと
まり 銀河が存在していないはず。
なので，もっと重い素粒子でないといけない。（一部は
ニュートリノというは最近流行のきざし）

宇宙の始まりから今まで

 をもう一度簡単にまとめておく グルーオンプラズマ）

ある程度膨張が進むと，普通の陽子，中性子，電子になる
さらに膨張し，温度が下がると，それまで電離していた陽子（水素原
子イオン）と電子か結合する（宇宙の晴れあがり）

う一度電離する（宇宙の再電離）

コールドダークマター

というわけで

- ダークマターは重い素粒子であるというのが現在の支配的理論
－銀河団より大きなスケールでは大きいほどゆらぎの振幅が小さく
- この一定値は無限に続くわけではなく，ダークマター粒子の質量に
関係した限界のところでならされる。（地球質量くらい）

どこまで信用できるか？

－現在の標準的な理解が確立したのは，比較的最近のこと
－ビッグバンの確実な証拠とされるマイクロ波背景放射が
発見されたのは 1960 年代
－インフレーションモデルの提案は 1980 年代
－超新星の観測結果からダークエネルギーが必要という理
解が標準的になったのは 2000 年代にはいってから
－現在の標準的理解はまだ 15 年ほどの歴史しかない。
天体形成
－重力（だけ）による天体形成

銀河群

[^0]: 宇宙の始まり・宇宙最初の天体

 > •宇宙論の歴史 •現在の描像 •残っている問題 $\quad-$ インフレーション $\quad-$ ダークマター $\quad-$ ダークエネルギー

[^1]: だした。

