銀河の形成と進化
惑星学 \mathbf{A}
宙の始まりから惑星形成まで
牧野淳一郎
神戸大学 惑星学専攻
講義概要
1．宇宙の始まり・宇宙最初の天体
2．銀河の形成と進化
3．星形成•惑星形成（I．標準モデル）
4．星形成•惑星形成（II．系外惑星と最近の発展）
と書きましたが様子ををみながら

[^0]系外惑星 －系外惑星発見からの歴史 現在の理解と今後の発展
－何故歴史を述べるか？
－古代・ギリシャ
－コペルニクスと地動説－星，銀河，系外銀河－宇宙膨張
宇宙の大規模構造：CfA サーベイからSDSSサーベイ
まで マイクロ波精密観測：COBE，WMAP，PLANCK，
色々はあるが $(こ の$ 話はあとで詳し
年くらい変わっていない －一方，宇宙論を考える上での物理法則は，素粒子論の
色々はあるが 1 この話はあとで詳しく）基本的にはこの 10 －なので，（おそらく）変わらず正しいことと，変わるかも
しれないことがある，ということを学んでほしい。
－物理学（力学とか量子力学とか）の講義では（まあ教科書
によるが）歴史はあんまりやらない。 －「最新の素粒子研究」とかだとどうしても歴史は必要。 外には）数十年とかもっと前に確立してあんまり変わって
ないもの。ニュートンのプリンキピアに書いてあること が根本的に変わったわけではない。 －宇宙論は，10－20年程度でかなり大きく変わってきた。
－ホメロス・ギリシャ神話の世界：大体地中海世界くらいの
周りに「オケアノスの大河」
•「地球」という考え：少なくともヘレニズム世界では普
通だった模様。エラトステネスによる地球の半径•月の
半径•月までの距離•太陽までの距離•太陽の半径の測定
（太陽は 10 倍くらい小さく評価）
－プトレマイオスの「天文学」（アルマゲスト）：天動説に基
づいた体系で天体の運動を高い精度で説明。円運動＋周
転円・エカント等。
1าフィップチ゚チルた
どうやって，シェネとアレクサンドリアで「同じ時
刻」に？
－紀元前に正確な時計があったわけはない。
紀元前に
4r（ı＊＊갑
｢地球」という考え：少なくともヘレニズム世界では普
通だった模様。エラトステネスによる地球の半径•月の
半径•月までの距離•太陽までの距離•太陽の半径の測定
転円・エカント等。
アレクサンドリアとシェネ

 ると物理法則とか星は核融合でエネルギーをだしている
とか結構少ないというのが問題い，
－それに対して，「宇宙論」は古代から，「宇宙はどうでき
たか」を「説明」するもの。
－まあその，「間違いなく正しいこと」だけ教えることにす
というわけで，ここからは「古代から現代までの宇宙観」
地球の半径の測定
方法の（時々見る）説明
－エジプト南部のシェネの町では，夏至の日の正午に太陽
は真上にくる。

これは， 800 km が地球の一周の $7 / 360$ に相当するとい
うこと。従って地球 1 周は 4 万 km くらい。

これちよっとおかしし

どうやって，シェネとアレクサンドリアで「同じ時 刻」に？
 刻」に？

$$
\begin{aligned}
& \text { •紀元前に正確な時計があったわけはない。 } \\
& \text { 答は: }
\end{aligned}
$$

アレクサンドリアはシェネのまあまあ北にある（真北から
はかなりずれる）
「同じ時刻」でなくても，アレクサンドリアでの正午で いい（もちろん結果的には大体同じ時刻になる）

天動説と地動説

－地球は宇宙の中心 －天上•地上•地獄の －天上の世界は神•天使のもの
なので：天動説と地動説の対立は，単に地球が太陽の周りを
回っているのかその逆か，という話ではない。地動説はキリ スト教の世界観の根本からの否定。

太陽が中心

¿2CE䡗古

－天上の世界は「完全」である

－完全な運動とは等速円運動である

ということで，月から上の天体（太陽も，金星等の惑星も）全
て等速円運動しかしないとした。
－惑星はあっちいたったりこっちいったりする

\rightarrow 複数の円運動の重ね合わせだとする。

その後の経緯
では何故地動説のほうがよいのか？

ティコの観測からの，ケプラーによる，惑星が太陽の周
を楕円運動することの発見
ガリレオによる木星の衛星の
スト教的宇宙観と矛盾）
－古典力学の成立：ニュートンによる楕円軌道の説明
－実は周転円だけではなかなか上手くいかない

みて天体は等角速度運動をしているとした
－これだとかなり上手くできる。

ということ

ニュートンカ学，万有引力の法則

 ニュートンカ学とはどういうものか？言葉では：「ある物体の加速度は，物体が受ける力を物体の質式で書くと：これをみて簡単と思うか，意味がわからないと思うかは，
どうでしょう？
空間が「 3 次元ユークリッド空間」：もの場所を「座標」
表すことができる。座標は 3 次元だと 3 個の数。それぞれが，
これは意外にややこしい概念。例えば $(1 \mathrm{~km},-1 \mathrm{~km}, 3 \mathrm{~km})$ と書いたとして，
$\bullet(0,0,0)$ の場所はどこ？
$\bullet 3$ つの方向のとりかたは？

ケプラーと二ュートン

十分正確に書けることの説明

$$
\begin{aligned}
& \text { これ意外に大変。加速度がない運動だけなら以下のように計 } \\
& \text { 算できる。 } \\
& \text { ある物体 } \mathrm{A}(\text { 例えば私 }) \text { の「絶対座標」を } \vec{x}(t) \text { とする。速度 } \\
& \text { は } \vec{v}(t) \text {, 加速度は } \vec{a}(t) \text { 。 } \\
& \text { これに対して, 絶対座標で加速度をうけない運動している点 } \\
& \text { B の座標は, } \vec{x}_{1}(t)=\vec{x}_{0}+\vec{v}_{0} t \text { と書くことができる。 } \vec{x}_{0} \text { も } \\
& \vec{v}_{0} \text { も時間がたっても変わらない。 }
\end{aligned}
$$

まだいえてないこと：回転とかややこしい運動をしている この部屋」にとった座標系で，地球の引力を考えるとニュー
これをちゃんと説明するには，「回転する座標系での運動方程

座標のとりかた

説明続き

$$
\begin{aligned}
& \text { 点 } \mathrm{B} \text { を基準にした点 } \mathrm{A} \text { の座標は } \vec{X}(t)=\overrightarrow{\boldsymbol{x}}(t)-\vec{x}_{1}(t) \text { とな } \\
& \text { る。速度は } \\
& \vec{V}(t)=\overrightarrow{\boldsymbol{v}}(\boldsymbol{t})-\vec{v}_{0} \\
& \text { なので, 加速度は } \\
& \overrightarrow{\boldsymbol{A}}(\boldsymbol{t})=\vec{a}(\boldsymbol{t})
\end{aligned}
$$

－ひもの先になんかつけて振り回すと引っ張られる力を感
じる
－これが遠心力
－ひもの長さ（回転半径）が同じなら回転速度が 2 倍になる
と力は 4 倍
－回転速度が同じなら回転半径が 2 倍になると力は 2 倍

部屋の中心から 1 m のところでの加速度が る。重力の 10 万分の 1 くらい。まあ小さい。 コリオリも同様に計算してまあ小さいことは

（現在の天文学の観測精度ではもちろん他の惑星の重力の

¢ 凡 覃

$=m r \omega^{2}$
回転半径

ちゃんと計算して加速度や力を出すには運動を三角関数で表
して時間微分 $(2$ 回する）を計算すればいい。

して時間微分（2回する）を計算すればいい。

「天動説と地動説」の話は，，

- というわけで，細かいことをいうと太陽も地球も動いて
> －というわけで，細かいことをいうと太陽も地球も動いて
いる
- 「この部屋」だけを考えたように，太陽と地球しか宇宙 にないとすると，太陽と地球はそれぞれ相手からの重力
を受けて運動。やはり太陽も地球も動いている
－でも，太陽のほうがはるかに重い $($ 地球の大体 100 万倍）
なので，太陽はほとんど動かないで地球だけが動いて なので，太陽はほとんど動かないで地球だけが動いて
－他の惑星をあわせても太陽のほうがまだ 3 桁くらい重い
ので，精密な計算でなければ他の惑星も考えないで太陽 の重力だけ考えればいい

ケプラーの3法則と二ュートン力学
2 番目もちょっと大変なので 3 番目だけ。

太陽に比べて十分軽い惑星が太陽の周りを円運動していると太陽に比べて十分軽い惑星が太陽の周りを円運から動して重力は太陽からの距離の 2 乗に反比例。 これは式にすると

$$
a \propto 1 / r^{2}
$$

z／gllumm
－ニュートン力学に従う太陽系だけを考えて，（現在の観点

－但し，ニュートンカ学に従う運動では，宇宙に太陽系し
は」地動説でも天動説でもない。
－ある意味，「天動説と地動説」の論争は最終的にはどちら
でもない別の宇宙観にとってかわられたといえる。

この話のポイントのようなもの

$$
\begin{aligned}
& \text { ・ニュートンの重力法則とニュートン力学の運動方程式か } \\
& \text { ら, ケプラーの } 3 \text { 法則が (近似的に) 成り立つことがしめ } \\
& \text { せる } \\
& \text { - ここで, より正確なのはニュートンカ学のほう。精密に } \\
& \text { 観測するとケプラーの } 3 \text { 法則は厳密には成り立たない (他 } \\
& \text { の惑星の影響が最大の効果) }
\end{aligned}
$$

なお，ものすごく精密にはニュートン力学も成り立たない。
一般相対論的効果を考える必要がある。
二ュートンが考えたこと：

$$
\begin{aligned}
& \text { 太陽と同じような星が宇宙全体に広がっているとすれば, そ } \\
& \text { れらはお互いの重力で集まったり落ちてきたりぶつかったり } \\
& \text { しないか? } \\
& \text { 本人が考えた解答 : } \\
& \text { 落ちてくるのには } 1 \text { 億年くらいかかるから大丈夫 (というか, } \\
& \text { 宇宙の年齢がこれで決まる?) } \\
& \text { 以下この辺の話 }
\end{aligned}
$$

星がみんな同じ明るさのはずないのでは？
それはまあそうなんだけど，地球からみた方向によって星の
明るさが違うのでなければ傾向は同じ。
洼い
結果の本質が変わらない範囲で物事を単純化するのはとて
も重要なこと

ハッブルのデータは距離が 10 倍近く間違ってたので，宇宙の

（地球の年齢はいつごろどうしてわかったかは惑星学科の私で | ない梂の年柃はいつこきいて下ささい） |
| :--- |
| なっていったかは惑星学科の私 |

－あるなら，最初はどうなっていて，「その前」はどうなっ
てるのか？
Cる0)
－本当に「宇宙の始まり」があるのか？
20世紀初め：H．シャプレー
ケフェウス型変光星は変光周期と明るさに関係がある
$=$ 変米．周期と明るさがわかれ，ば距離がわかる Shapley＇s Globular Cluster Distribution

太陽系は銀河系の中心にあるわけではない。
20世紀初め：E．ハッブル（2）地球の年粉より短くなったい

宇宙膨張と銀河

$$
\begin{aligned}
& 2 \text { つの問題がある。 } \\
& \text { •宇宙全体としてはなにがおきているのか } \\
& \text { •一つ一つの星, 太陽系, 銀河とかについてはどうか? } \\
& \text { ちょっと別の(でも重要な) 問題: }
\end{aligned}
$$

ちょっと別の（でも重要な）問題：
•本当に「宇宙の始まり」があるのか？

（I）1

$$
\begin{aligned}
& \text { 肚 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { な せ " }
\end{aligned}
$$

$$
\begin{aligned}
& \text { S缕 }
\end{aligned}
$$

余談

 －シャプレー：アンドロメダとかの星雲は銀河の中にある －カーティス：外にある

> 决着がついたのは，ハッブルによってアンドロメダ星雲の中
に変光星が見つかって距離が（間違っていたけど）わかった に変光星が見つかって距離が（間違っていたけど）わかった

[^1]ものが落ちないようにする方法
•「反重力」でささえる
•宇宙は広がっているということにする。重力で減速はし
ている。
•上の 2 つの組合わせ
「反重力」なんての超科学かトンデモかと思うかもしれない
けど，これはそうでもなくてアインシュタイン自身のアイ
ディア。そういうもの（宇宙項）があるということにすると
空間が落ちてこないで済む。空間が落ちてこないで済む。

宇宙膨張の問題点

\square

宇宙の年齢が今の $1 / 10$ になって，放射性元素で決めた地球
の年齢よりずっと若くなった。 の年齢よりずっと若くなった。

これを回避するために，「膨張するけれど定常で年齢は無限大」といったモデルも考えられた。

どんなふうにゆっくりになるか？

宇宙全体としてはなにがおきているのか？

> 現代的な「宇宙論」の基本的問題
> $=$ 宇宙空間というものはどうやってそこに存在できているか？一般相対性理論で初めて本当に扱えるようになった問題。私は良く知らない

宇宙膨張

宇宙が全体として膨張しているとすれば宇宙全体に対する一
般相対論のアインシュタイン方程式に宇宙項をつけなくても
解がある：ルメートルとかド・ジッターのアイディア。これ
は 1920 年ころ。
遠くの銀河を観測すると本当に距離に比例した速度で遠ざ
かっているらしいとわかってきたのが 1930 年頃。
最初は速度一距離の比例係数の見積りがいまと 10 倍違った
のでいろいろ混乱があった。

最初は速度一距離の比例係数の見積りがいまと 10 倍違った
のでいろいろ混乱があった。
宇宙が膨張するつて？

宇宙に物質があれば，必ず重力があって，お互いにひきあう。なので，「止
まっている」解はない。全体として膨張，全体として収縮，はありうる。重力のため，段々膨張がゆっくりになる。

[^0]: 宇宙の始まり・宇宙最初の天体

 > •宇宙論の歴史 •現在の描像 •残っている問題 $\quad-$ インフレーション $\quad-$ ダークマター $\quad-$ ダークエネルギー

[^1]: 宇宙論の歴史は，地球が宇宙の中心でなくなっていく歴史
 ともいえる。太陽，我々の銀河，系外銀河，．

